Introduction to
Agents

Authors: Alan Blount, Antonio Gulli, Shubham Saboo,
Michael Zimmermann, and Vladimir Vuskovic

Google

Introduction to Agents and Agent architectures

Acknowledgements

Content contributors

Enrique Chan
Mike Clark

Derek Egan
Anant Nawalgaria
Kanchana Patlolla

Julia Wiesinger

Curators and editors

Anant Nawalgaria

Kanchana Patlolla

Designer

Michael Lanning

November 2025

Table of contents

From Predictive Al to AUtoNOmMoOUS Agents 6
Introduction 10 Al AQeNts 8
The Agentic Problem-Solving Process 10
A Taxonomy of Agentic Systems 14
Level O: The Core Reasoning System 15
Level 1: The Connected Problem-Solver I
Level 2: The Strategic Problem-Solver 16
Level 3: The Collaborative Multi-Agent System 17
Level 4: The Self-Evolving System 18
Core Agent Architecture: Model, Tools, and Orchestration 19
Model: The “Brain” of your AlAgent 19
Tools: The "Hands" of your Al Agent 20

Retrieving Information: GroundinginReality2

Executing Actions: Changing the World 2

Function Calling: Connecting Tools to your Agent 22

Table of contents

The Orchestration Layer 22
Core Design Choices 23
Instruct with Domain Knowledge and Persona .~~~ . 23
Augment with Context 24
Multi-Agent Systems and Design Patterns__ L.

Agent Deployment and Services 26

Agent Ops: A Structured Approach to the Unpredictable 27

Measure What Matters: Instrumenting Success Like an A/B Experiment. 29

Quality Instead of Pass/Fail: Usinga LM Judge 29
Metrics-Driven Development: Your Go/No-Go for Deployment 30
Debug with OpenTelemetry Traces: Answering "Why?* 30
Cherish Human Feedback: Guiding Your Automation - 3A
Agent Interoperability B

Agents and HUMaNS 32

Table of contents

Securing a Single Agent: The Trust Trade-Off 34
Agent Identity: A New Class of Principal 35
Policies to Constrain Access . 37
Securing an ADK AQeNt 37

Scaling Up from a Single Agent to an Enterprise Fleet 39
Security and Privacy: Hardening the Agentic Frontier 40
Agent Governance: A Control Plane instead of Sprawl 40

How agents evolve and learn 42
How agents learn and selfevolve 43
Simulation and Agent Gym - the next frontier 46

Examples of advanced agents 47
Google Co-Scientist 47
AlphaEvolve Agent 49

conclusion. 51

Endnotes 52

Introduction to Agents and Agent architectures

Agents are the natural evolution
of Language Models, made useful
In software.

From Predictive Al to
Autonomous Agents

Artificial intelligence is changing. For years, the focus has been on models that excel at
passive, discrete tasks: answering a question, translating text, or generating an image from
a prompt. This paradigm, while powerful, requires constant human direction for every step.
We're now seeing a paradigm shift, moving from Al that just predicts or creates content to a
new class of software capable of autonomous problem-solving and task execution.

This new frontier is built around Al agents. An agent is not simply an Al model in a static

workflow; it's a complete application, making plans and taking actions to achieve goals. It
combines a Language Model's (LM) ability to reason with the practical ability to act, allowing

November 2025 6

Introduction to Agents and Agent architectures

it to handle complex, multi-step tasks that a model alone cannot. The critical capability is that
agents can work on their own, figuring out the next steps needed to reach a goal without a
person guiding them at every turn.

This document is the first in a five-part series, acting as a formal guide for the developers,
architects, and product leaders transitioning from proofs-of-concept to robust,
production-grade agentic systems. While building a simple prototype is straightforward,
ensuring security, quality and reliability is a significant challenge. This paper provides a
comprehensive foundation:

« Core Anatomy: Deconstructing an agent into its three essential components: the
reasoning Model, actionable Tools, and the governing Orchestration Layer.

« A Taxonomy of Capabilities: Classifying agents from simple, connected problem-solvers
to complex, collaborative multi-agent systems.

« Architectural Design: Diving into the practical design considerations for each
component, from model selection to tool implementation.

 Building for Production: Establishing the Agent Ops discipline needed to evaluate,
debug, secure, and scale agentic systems from a single instance to a fleet with
enterprise governance.

Building on the previous Agents whitepaper' and Agent Companion?; this guide provides
the foundational concepts and strategic frameworks you will need to successfully build,
deploy, and manage this new generation of intelligent applications which can reason, act and
observe to accomplish goals?.

November 2025 7

https://www.kaggle.com/whitepaper-agents
https://www.kaggle.com/whitepaper-agent-companion
https://arxiv.org/pdf/2201.11903

Introduction to Agents and Agent architectures

Words are insufficient to describe how humans interact with Al. We tend to
anthropomorphize and use human terms like “think” and “reason” and “know.” We don't
yet have words for "know with semantic meaning" vs "know with high probability of
maximizing a reward function." Those are two different types of knowing, but the results
are the same 99.X% of the time.

Introduction to Al Agents

In the simplest terms, an Al Agent can be defined as the combination of models, tools, an
orchestration layer, and runtime services which uses the LM in a loop to accomplish a goal.
These four elements form the essential architecture of any autonomous system.

« The Model (The "Brain"): The core language model (LM) or foundation model that serves
as the agent's central reasoning engine to process information, evaluate options, and
make decisions. The type of model (general-purpose, fine-tuned, or multimodal) dictates
the agent's cognitive capabilities. An agentic system is the ultimate curator of the input
context window the LM.

» Tools (The "Hands"): These mechanisms connect the agent's reasoning to the outside
world, enabling actions beyond text generation. They include API extensions, code
functions, and data stores (like databases or vector stores) for accessing real-time, factual
information. An agentic system allows a LM to plan which tools to use, executes the tool,
and puts the tool results into the input context window of the next LM call.

« The Orchestration Layer (The "Nervous System"): The governing process that
manages the agent's operational loop. It handles planning, memory (state), and reasoning
strategy execution. This layer uses prompting frameworks and reasoning techniques (like

November 2025 8

Introduction to Agents and Agent architectures

Chain-of-Thought* or ReAct®) to break down complex goals into steps and decide when

to think versus use a tool. This layer is also responsible for giving agents the memory
to "remember."

« Deployment (The "Body and Legs"): While building an agent on a laptop is effective for
prototyping, production deployment is what makes it a reliable and accessible service.
This involves hosting the agent on a secure, scalable server and integrating it with
essential production services for monitoring, logging, and management. Once deployed,
the agent can be accessed by users through a graphical interface or programmatically by
other agents via an Agent-to-Agent (A2A) API.

At the end of the day, building a generative Al agent is a new way to develop solutions to
solve tasks. The traditional developer acts as a "bricklayer," precisely defining every logical
step. The agent developer, in contrast, is more like a director. Instead of writing explicit code
for every action, you set the scene (the guiding instructions and prompts), select the cast
(the tools and APIs), and provide the necessary context (the data). The primary task becomes
guiding this autonomous "actor" to deliver the intended performance.

You'll quickly find that an LM's greatest strength—its incredible flexibility—is also your biggest
headache. A large language model's capacity to do anything makes it difficult to compel it to
do one specific thing reliably and perfectly. What we used to call “prompt engineering” and
now call “context engineering” guides LMs to generate the desired output. For any single

call to a LM, we input our instructions, facts, available tools to call, examples, session history,
user profile, etc - filling the context window with just the right information to get the outputs
we need. Agents are software which manage the inputs of LMs to get work done.

Debugging becomes essential when issues arise. "Agent Ops" essentially redefines the
familiar cycle of measurement, analysis, and system optimization. Through traces and logs,
you can monitor the agent's "thought process" to identify deviations from the intended
execution path. As models evolve and frameworks improve, the developer's role is to furnish

November 2025 9

https://arxiv.org/pdf/2201.11903
https://arxiv.org/abs/2210.03629

Introduction to Agents and Agent architectures

critical components: domain expertise, a defined personality, and seamless integration
with the tools necessary for practical task completion. It's crucial to remember that
comprehensive evaluations and assessments often outweigh the initial prompt's influence.

When an agent is precisely configured with clear instructions, reliable tools, and an
integrated context serving as memory, a great user interface, the ability to plan and problem
solve, and general world knowledge, it transcends the notion of mere "workflow automation."
It begins to function as a collaborative entity: a highly efficient, uniquely adaptable, and
remarkably capable new member of your team.

In essence, an agent is a system dedicated to the art of context window curation. It

is a relentless loop of assembling context, prompting the model, observing the result,
and then re-assembling a context for the next step. The context may include system
instructions, user input, session history, long term memories, grounding knowledge from
authoritative sources, what tools could be used, and the results of tools already invoked.
This sophisticated management of the model's attention allows its reasoning capabilities
to problem solve for novel circumstances and accomplish objectives.

The Agentic Problem-Solving Process
We have defined an Al agent as a complete, goal-oriented application that integrates a
reasoning model, actionable tools, and a governing orchestration layer. A short version is

“LMs in a loop with tools to accomplish an objective.”

But how does this system actually work? What does an agent do from the moment it receives
a request to the moment it delivers a result?

November 2025 10

Introduction to Agents and Agent architectures

At its core, an agent operates on a continuous, cyclical process to achieve its objectives.

While this loop can become highly complex, it can be broken down into five fundamental

steps as discussed in detail in the book Agentic System Design:®

1.

Get the Mission: The process is initiated by a specific, high-level goal. This mission is
provided by a user (e.g., "Organize my team's travel for the upcoming conference") or an
automated trigger (e.g., "A new high-priority customer ticket has arrived").

. Scan the Scene: The agent perceives its environment to gather context. This involves

the orchestration layer accessing its available resources: "What does the user's request
say?", "What information is in my term memory? Did | already try to do this task? Did the
user give me guidance last week?", "What can | access from my tools, like calendars,
databases, or APIs?"

. Think It Through: This is the agent's core "think" loop, driven by the reasoning model. The

agent analyzes the Mission (Step 1) against the Scene (Step 2) and devises a plan. This
isn't a single thought, but often a chain of reasoning: "To book travel, | first need to know
who is on the team. | will use the get_team_roster tool. Then | will need to check their
availability via the calendar_api."

. Take Action: The orchestration layer executes the first concrete step of the plan.

It selects and invokes the appropriate tool—calling an API, running a code function,
or querying a database. This is the agent acting on the world beyond its own
internal reasoning.

. Observe and Iterate: The agent observes the outcome of its action. The get_

team_roster tool returns a list of five names. This new information is added to the
agent's context or "'memory." The loop then repeats, returning to Step 3: "Now that |
have the roster, my next step is to check the calendar for these five people. | will use
the calendar_api."

November 2025 1

Introduction to Agents and Agent architectures

This "Think, Act, Observe" cycle continues - managed by the Orchestration Layer, reasoned
by the Model, and executed by the Tools until the agent's internal plan is complete and the
initial Mission is achieved.

Figure 1: Agentic Al problem-solving process

Let’s take a real-world example of how a Customer Support Agent would operate in this
5-step cycle:

Imagine a user asks, "Where is my order #12345?"

November 2025 12

Introduction to Agents and Agent architectures

Instead of immediately acting, the agent first enters its “Think It Through" phase to devise a
complete strategy. It reasons:
"The user wants a delivery status. To provide a complete answer, | need a multi-step plan:

1. Identify: | must first find the order in our internal database to confirm it exists and get
its details.

2. Track: From those details, I'll need to extract the shipping carrier's tracking number. Then,
I'll query the external carrier's API for the live status.

3. Report: Finally, | must synthesize the information I've gathered into a clear, helpful
response for the user."

With this multi-step plan in mind, the agent begins execution.

In its first "Act" phase, it executes step one of its plan, calling the find_order("12345")
tool. It observes the result—a full order record, including the tracking number "ZYX987."

The agent's orchestration layer recognizes that the first part of its plan is complete
and immediately proceeds to the second. It acts by calling the get_shipping_
status("ZYX987") tool. It observes the new result: "Out for Delivery."

Finally, having successfully executed the data-gathering stages of its plan, the agent

moves to the "Report" step. It perceives it has all the necessary components, plans the final
message, and acts by generating the response: "Your order #12345 is 'Out for Delivery'!

November 2025 13

Introduction to Agents and Agent architectures

A Taxonomy of Agentic Systems

Understanding the 5-step operational loop is the first part of the puzzle. The second is
recognizing that this loop can be scaled in complexity to create different classes of agents.
For an architect or product leader, a key initial decision is scoping what kind of agent to build.

We can classify agentic systems into a few broad levels, each building on the capabilities of
the last.

Figure 2: Agentic system in 5 steps

November 2025 14

Introduction to Agents and Agent architectures

Level O: The Core Reasoning System

Before we can have an agent, we must start with the "Brain" in its most basic form: the
reasoning engine itself. In this configuration, a Language Model (LM) operates in isolation,
responding solely based on its vast pre-trained knowledge without any tools, memory, or
interaction with the live environment.

Its strength lies in this extensive training, allowing it to explain established concepts and plan
how to approach solving a problem with great depth. The trade-off is a complete lack of real-
time awareness; it is functionally "blind" to any event or fact outside its training data.

For instance, it can explain the rules of professional baseball and the complete history of the
New York Yankees. But if you ask, "What was the final score of the Yankees game last night?",
it would be unable to answer. That game is a specific, real-world event that happened after
its training data was collected, so the information simply doesn't exist in its knowledge.

Level 1: The Connected Problem-Solver

At this level, the reasoning engine becomes a functional agent by connecting to and utilizing
external tools - the "Hands" component of our architecture. Its problem-solving is no longer
confined to its static, pre-trained knowledge.

Using the 5-step loop, the agent can now answer our previous question. Given the "Mission™:
"What was the final score of the Yankees game last night?", its "Think" step recognizes this
as a real-time data need. Its "Act" step then invokes a tool, like a Google Search API with the
proper date and search terms. It "Observes" the search result (e.g., "Yankees won 5-3"), and
synthesizes that fact into a final answer.

November 2025 15

Introduction to Agents and Agent architectures

This fundamental ability to interact with the world - whether using a search tool for a score,
a financial API for a live stock price, or a database via Retrieval-Augmented Generation (RAG)
is the core capability of a Level 1agent.

Level 2: The Strategic Problem-Solver

Level 2 marks a significant expansion in capability, moving from executing simple tasks to
strategically planning complex, multi-part goals. The key skill that emerges here is context
engineering: the agent's ability to actively select, package, and manage the most relevant
information for each step of its plan.

An agent's accuracy depends on a focused, high-quality context. Context engineering
curates the model's limited attention to prevent overload and ensure efficient performance.

For instance, consider the "Mission": "Find a good coffee shop halfway between my office
at 1600 Amphitheatre Parkway, Mountain View, and my client's office at 1 Market St,
San Francisco."”
A Level 2 agent will start creating a plan:
1. Think: "I must first find the halfway point."

« Act: Call the Maps tool with both addresses.

« Observe: "The halfway point is Millorae, CA."

2. Think: "Now | must find coffee shops in Millbrae. The user asked for 'good' ones, so | will
search for places with a 4-star rating or higher."

November 2025 16

Introduction to Agents and Agent architectures

« Act: Call the google_places tool with query="coffee shop in Millbrae, CA",
min_rating=4.0. (This is context engineering - it automatically created a new, focused
search query from the previous step's output).

» Observe: "The search returns 'Millorae Coffee' and ‘The Daily Grind'.

3. Think: "I will synthesize these results and present them to the user."

This strategic planning also enables proactive assistance, like an agent that reads a long
flight confirmation email, engineers the key context (flight number, date), and acts by adding
it to your calendar.

Level 3: The Collaborative Multi-Agent System

At the highest level, the paradigm shifts entirely. We move away from building a single, all-
powerful "super-agent" and toward a "team of specialists" working in concert, a model that
directly mirrors a human organization. The system's collective strength lies in this division of
labor.

Here, agents treat other agents as tools. Imagine a "Project Manager" agent receiving a

"Mission": "Launch our new 'Solaris' headphones."
The Project Manager agent doesn't do the entire work itself. It Acts by creating new Missions
for its team of specialized agents much like how it works in the real life:

1. Delegates to MarketResearchAgent: "Analyze competitor pricing for noise-canceling
headphones. Return a summary document by tomorrow."

2. Delegates to MarketingAgent: "Draft three versions of a press release using the 'Solaris’
product spec sheet as context."

November 2025 17

Introduction to Agents and Agent architectures

3. Delegates to WebDevAgent: "Generate the new product page HTML based on the
attached design mockups."

This collaborative model, while currently constrained by the reasoning limitations of today's
LMs, represents the frontier of automating entire, complex business workflows from start
to finish.

Level 4: The Self-Evolving System

Level 4 represents a profound leap from delegation to autonomous creation and adaptation.
At this level, an agentic system can identify gaps in its own capabilities and dynamically
create new tools or even new agents to fill them. It moves from using a fixed set of resources
to actively expanding them.

Following our example, the "Project Manager" agent, tasked with the 'Solaris' launch, might
realize it needs to monitor social media sentiment, but no such tool or agent exists on
its team.

1. Think (Meta-Reasoning): "I must track social media buzz for 'Solaris," but | lack
the capability.”

2. Act (Autonomous Creation): Instead of failing, it invokes a high-level AgentCreator tool
with a new mission: "Build a new agent that monitors social media for keywords 'Solaris
headphones', performs sentiment analysis, and reports a daily summary."

3. Observe: A new, specialized SentimentAnalysisAgent is created, tested, and added to the
team on the fly, ready to contribute to the original mission.

This level of autonomy, where a system can dynamically expand its own capabilities, turns a
team of agents into a truly learning and evolving organization.

November 2025 18

Introduction to Agents and Agent architectures

Core Agent Architecture: Model, Tools,
and Orchestration

We know what an agent does and how it can scale. But how do we actually build it?
The transition from concept to code lies in the specific architectural design of its three
core components.

Model: The “Brain” of your Al Agent

The LM is the reasoning core of your agent, and its selection is a critical architectural
decision that dictates your agent's cognitive capabilities, operational cost, and speed.
However, treating this choice as a simple matter of picking the model with the highest
benchmark score is a common path to failure. An agent's success in a production
environment is rarely determined by generic academic benchmarks.

Real-world success demands a model that excels at agentic fundamentals: superior
reasoning to navigate complex, multi-step problems and reliable tool use to interact with
the world".

To do this well, start by defining the business problem, then test models against metrics
that directly map to that outcome. If your agent needs to write code, test it on your private
codebase. If it processes insurance claims, evaluate its ability to extract information

from your specific document formats. This analysis must then be cross-referenced with
the practicalities of cost and latency. The "best" model is the one that sits at the optimal
intersection of quality, speed, and price for your specific task®.

November 2025 19

https://arxiv.org/abs/2406.12045
https://artificialanalysis.ai/guide

Introduction to Agents and Agent architectures

You may choose more than one model, a "team of specialists.” You don't use a sledgehammer
to crack a nut. A robust agent architecture might use a frontier model like Gemini 2.5 Pro for
the heavy lifting of initial planning and complex reasoning, but then intelligently route simpler,
high-volume tasks—like classifying user intent or summarizing text—to a much faster and
more cost-effective model like Gemini 2.5 Flash. Model routing might be automatic or hard-

coded but is a key strategy for optimizing both performance and cost’.

The same principle applies to handling diverse data types. While a natively multimodal
model like Gemini live mode™ offers a streamlined path to processing images and audio,

an alternative is to use specialized tools like the Cloud Vision API" or Speech-to-Text API™.

In this pattern, the world is first converted to text, which is then passed to a language-only
model for reasoning. This adds flexibility and allows for best-of-breed components, but also
introduces significant complexity.

Finally, the Al landscape is in a state of constant, rapid evolution. The model you choose
today will be superseded in six months. A "set it and forget it" mindset is unsustainable.
Building for this reality means investing in a nimble operational framework—an "Agent Ops"
practice™. With a robust CI/CD pipeline that continuously evaluates new models against your
key business metrics, you can de-risk and accelerate upgrades, ensuring your agent is always
powered by the best brain available without requiring a complete architectural overhaul.

Tools: The "Hands" of your Al Agent

If the model is the agent's brain, tools are the hands that connect its reasoning to reality.
They allow the agent to move beyond its static training data to retrieve real-time information
and take action in the world. A robust tool interface is a three-part loop: defining what a tool
can do, invoking it, and observing the result.

November 2025 20

https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/vertex-ai-model-optimizer
https://gemini.google/overview/gemini-live/
https://cloud.google.com/vision?e=48754805&hl=en]
https://cloud.google.com/speech-to-text?e=48754805&hl=en
https://medium.com/google-cloud/genaiops-operationalize-generative-ai-a-practical-guide-d5bedaa59d78

Introduction to Agents and Agent architectures

Here are a few of the main types of tools agent builders will put into the “hands” of
their agents. For a more complete deep dive see the agent tools focused whitepaper in
this series.

Retrieving Information: Grounding in Reality

The most foundational tool is the ability to access up-to-date information. Retrieval-
Augmented Generation (RAG) gives the agent a "library card" to query external knowledge,
often stored in Vector Databases or Knowledge Graphs, ranging from internal company
documents to web knowledge via Google Search. For structured data, Natural Language to
SQL (NL2SQLl) tools allow the agent to query databases to answer analytic questions like,
"What were our top-selling products last quarter?” By looking things up before speaking—
whether in a document or a database—the agent grounds itself in fact, dramatically

reducing hallucinations.

Executing Actions: Changing the World

The true power of agents is unleashed when they move from reading information to actively
doing things. By wrapping existing APIs and code functions as tools, an agent can send an
email, schedule a meeting, or update a customer record in ServiceNow. For more dynamic
tasks, an agent can write and execute code on the fly. In a secure sandbox, it can generate
a SQL query or a Python script to solve a complex problem or perform a calculation,
transforming it from a knowledgeable assistant into an autonomous actor™.

November 2025 21

https://cloud.google.com/agent-builder/agent-engine/code-execution/overview

Introduction to Agents and Agent architectures

This also includes tools for human interaction. An agent can use a Human in the Loop
(HITL) tool to pause its workflow and ask for confirmation (e.g., ask_for_confirmation())
or request specific information from a user interface (e.g., ask_for_date_input()),
ensuring a person is involved in critical decisions. HITL could be implemented via SMS text
messaging and a task in a database.

Function Calling: Connecting Tools to your Agent

For an agent to reliably do “function calling” and use tools, it needs clear instructions, secure
connections, and orchestration®™. Longstanding standards like the OpenAPI specification
provide this, giving the agent a structured contract that describes a tool's purpose, its
required parameters, and its expected response. This schema lets the model generate the
correct function call every time and interpret the API response. For simpler discovery and
connection to tools, open standards like the Model Context Protocol (MCP) have become
popular because they are more convenient'. Additionally, a few models have native tools,
like Gemini with native Google Search, where the function invocation happens as part of the
LM call itself".

The Orchestration Layer

If the model is the agent's brain and the tools are its hands, the orchestration layer is

the central nervous system that connects them. It is the engine that runs the "Think, Act,
Observe" loop, the state machine that governs the agent's behavior, and the place where
a developer's carefully crafted logic comes to life. This layer is not just plumbing; it is the
conductor of the entire agentic symphony, deciding when the model should reason, which
tool should act, and how the results of that action should inform the next movement.

November 2025 22

https://ai.google.dev/gemini-api/docs/function-calling?example=meeting
https://github.com/modelcontextprotocol/
https://ai.google.dev/gemini-api/docs/google-search

Introduction to Agents and Agent architectures

Core Design Choices

The first architectural decision is determining the agent's degree of autonomy. The choice
exists on a spectrum. At one end, you have deterministic, predictable workflows that call an
LM as a tool for a specific task—a sprinkle of Al to augment an existing process. At the other
end, you have the LM in the driver's seat, dynamically adapting, planning and executing tasks
to achieve a goal.

A parallel choice is the implementation method. No-code builders offer speed and
accessibility, empowering business users to automate structured tasks and build simple
agents rapidly. For more complex, mission-critical systems, code-first frameworks, such as
Google's Agent Development Kit (ADK)'®, provide the deep control, customizability, and

integration capabilities that engineers require.

Regardless of the approach, a production-grade framework is essential. It must be open,
allowing you to plug in any model or tool to prevent vendor lock-in. It must provide precise
control, enabling a hybrid approach where the non-deterministic reasoning of an LM is
governed by hard-coded business rules. Most importantly, the framework must be built for
observability. When an agent behaves unexpectedly, you cannot simply put a breakpoint in
the model's "thought." A robust framework generates detailed traces and logs, exposing the
entire reasoning trajectory: the model's internal monologue, the tool it chose, the parameters
it generated, and the result it observed.

Instruct with Domain Knowledge and Persona
Within this framework, the developer's most powerful lever is to instruct the agent with

domain knowledge and a distinct persona. This is accomplished through a system prompt
or a set of core instructions. This isn't just a simple command; it is the agent's constitution.

November 2025 23

https://google.github.io/adk-docs/

Introduction to Agents and Agent architectures

Here, you tell it, You are a helpful customer support agent for Acme Corp,

and provide constraints, desired output schema, rules of engagement, a specific tone of
voice, and explicit guidance on when and why it should use its tools. A few example scenarios
in the instructions are usually very effective.

Augment with Context

The agent's “memory” is orchestrated into the LM context window at runtime. For a more
complete deep dive see the agent memory focused whitepaper in this series.

Short-term memory is the agent's active "scratchpad," maintaining the running history of the
current conversation. It tracks the sequence of (Action, Observation) pairs from the ongoing
loop, providing the immediate context the model needs to decide what to do next. This may
be implemented as abstractions like state, artifacts, sessions or threads.

Long-term memory provides persistence across sessions. Architecturally, this is almost
always implemented as another specialized tool—a RAG system connected to a vector
database or search engine. The orchestrator gives the agent the ability to pre-fetch and to
actively query its own history, allowing it to "remember" a user's preferences or the outcome
of a similar task from weeks ago for a truly personalized and continuous experience.”

Multi-Agent Systems and Design Patterns
As tasks grow in complexity, building a single, all-powerful "super-agent" becomes inefficient.

The more effective solution is to adopt a "team of specialists" approach, which mirrors
a human organization. This is the core of a multi-agent system: a complex process is

November 2025 24

https://google.github.io/adk-docs/sessions/memory/

Introduction to Agents and Agent architectures

segmented into discrete sub-tasks, and each is assigned to a dedicated, specialized Al agent.
This division of labor allows each agent to be simpler, more focused, and easier to build, test,
and maintain, which is ideal for dynamic or long-running business processes.

Architects may rely on proven agentic design patterns, though agent capabilities and thus
patterns are evolving rapidly.?° For dynamic or non-linear tasks, the Coordinator pattern is
essential. It introduces a "manager" agent that analyzes a complex request, segments the
primary task, and intelligently routes each sub-task to the appropriate specialist agent (like a
researcher, a writer, or a coder). The coordinator then aggregates the responses from each
specialist to formulate a final, comprehensive answer.

Figure 3: The “iterative refinement” pattern from
https://cloud.google.com/architecture/choose-design-pattern-agentic-ai-system

For more linear workflows, the Sequential pattern is a better fit, acting like a digital assembly
line where the output from one agent becomes the direct input for the next. Other key
patterns focus on quality and safety. The Iterative Refinement pattern creates a feedback
loop, using a "generator" agent to create content and a “critic" agent to evaluate it against

November 2025 25

https://cloud.google.com/architecture/choose-design-pattern-agentic-ai-system
https://cloud.google.com/architecture/choose-design-pattern-agentic-ai-system

Introduction to Agents and Agent architectures

quality standards. For high-stakes tasks, the Human-in-the-Loop (HITL) pattern is critical,
creating a deliberate pause in the workflow to get approval from a person before an agent
takes a significant action.

Agent Deployment and Services

After you have built a local agent, you will want to deploy it to a server where it runs all the
time and where other people and agents can use it. Continuing our analogy, deployment and
services would be the body and legs for our agent. An agent requires several services to be
effective, session history and memory persistence, and more. As an agent builder, you will
also be responsible for deciding what you log, and what security measures you take for data
privacy and data residency and regulation compliance. All of these services are in scope,
when deploying agents to production.

Luckily, agent builders can rely on decades of application hosting infrastructure. Agents are
a new form of software after all and many of the same principles apply. Builders can rely

on purpose-built, agent specific, deployment options like Vertex Al Agent Engine which
support runtime and everything else in one platform?'. For software developers who want to
control their application stacks more directly, or deploy agents within their existing DevOps
infrastructure, any agent and most agent services can be added to a docker container and
deployed onto industry standard runtimes like Cloud Run or GKE?.

November 2025 26

https://cloud.google.com/agent-builder/agent-engine/overview
https://cloud.google.com/kubernetes-engine/docs/concepts/gke-and-cloud-run

Introduction to Agents and Agent architectures

Figure 4: Vertex Al Agent builder from
https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/overview

If you are not a software developer and a DevOps expert, the process of deploying your first
agent might be daunting. Many agent frameworks make this easy with a deploy command
or a dedicated platform to deploy the agent, and these should be used for early exploration
and onboarding. Ramping up to a secure and production ready environment will usually
require a bigger investment of time and application of best practices, including CI/CD and
automated testing for your agents?®.

Agent Ops: A Structured Approach to the Unpredictable

As you build your first agents, you will be manually testing the behavior, over and over
again. When you add a feature, does it work? When you fix a bug, did you cause a
different problem? Testing is normal for software development but it works differently with
generative Al.

November 2025 27

https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/overview
https://github.com/GoogleCloudPlatform/agent-starter-pack

Introduction to Agents and Agent architectures

The transition from traditional, deterministic software to stochastic, agentic systems requires
a new operational philosophy. Traditional software unit tests could simply assert output ==
expected; but that doesn’t work when an agent's response is probabilistic by design. Also,
because language is complicated, it usually requires a LM to evaluate “quality” — that the
agent's response does all of what it should, nothing it shouldn’t, and with proper tone.

Figure 5: Relationships between the operational domains of DevOps, MLOps, and GenAlOps from
https://medium.com/@sokratis.kartakis/genai-in-production-mlops-or-genaiops-25691c9becd0

Agent Ops is the disciplined, structured approach to managing this new reality. It is a natural
evolution of DevOps and MLOps, tailored for the unique challenges of building, deploying,
and governing Al agents, turning unpredictability from a liability into a managed, measurable,
and reliable feature.?* For a more complete deep dive see the agent quality focused
whitepaper in this series.

November 2025 28

https://medium.com/@sokratis.kartakis/genai-in-production-mlops-or-genaiops-25691c9becd0

Introduction to Agents and Agent architectures

Measure What Matters: Instrumenting Success Like an
A/B Experiment

Before you can improve your agent, you must define what "better" means in the context of
your business. Frame your observability strategy like an A/B test and ask yourself: what are
the Key Performance Indicators (KPIs) that prove the agent is delivering value? These metrics
should go beyond technical correctness and measure real-world impact: goal completion
rates, user satisfaction scores, task latency, operational cost per interaction, and—most
importantly—the impact on business goals like revenue, conversion or customer retention.
This top-down view will guide the rest of your testing, puts you on the path to metrics driven
development, and will let you calculate a return on investment.

Quality Instead of Pass/Fail: Using a LM Judge

Business metrics don't tell you if the agent is behaving correctly. Since a simple pass/fail is
impossible, we shift to evaluating for quality using an "LM as Judge." This involves using a
powerful model to assess the agent's output against a predefined rubric: Did it give the right
answer? Was the response factually grounded? Did it follow instructions? This automated
evaluation, run against a golden dataset of prompts, provides a consistent measure

of quality.

Creating the evaluation datasets—which include the ideal (or "golden") questions and correct
responses—can be a tedious process. To build these, you should sample scenarios from
existing production or development interactions with the agent. The dataset must cover the
full breadth of use cases that you expect your users to engage with, plus a few unexpected
ones. While investment in evaluation pays off quickly, evaluation results should always be

November 2025 29

Introduction to Agents and Agent architectures

reviewed by a domain expert before being accepted as valid. Increasingly, the curation and
maintenance of these evaluations is becoming a key responsibility for Product Managers with
the support from Domain experts.

Metrics-Driven Development: Your Go/No-Go for Deployment

Once you have automated dozens of evaluation scenarios and established trusted quality
scores, you can confidently test changes to your development agent. The process is simple:
run the new version against the entire evaluation dataset, and directly compare its scores
to the existing production version. This robust system eliminates guesswork, ensuring you
are confident in every deployment. While automated evaluations are critical, don't forget
other important factors like latency, cost, and task success rates. For maximum safety, use
A/B deployments to slowly roll out new versions and compare these real-world production
metrics alongside your simulation scores.

Debug with OpenTelemetry Traces: Answering "Why?"

When your metrics dip or a user reports a bug, you need to understand "why." An
OpenTelemetry trace is a high-fidelity, step-by-step recording of the agent's entire execution
path (trajectory), allowing you to debug the agent's steps.?® With traces, you can see the
exact prompt sent to the model, the model's internal reasoning (if available), the specific

tool it chose to call, the precise parameters it generated for that tool, and the raw data that
came back as an observation. Traces can be complicated the first time you look at them but
they provide the details needed to diagnose and fix the root cause of any issue. Important
trace details may be turned into metrics, but reviewing traces is primarily for debugging, not

November 2025 30

https://opentelemetry.io/blog/2025/ai-agent-observability/

Introduction to Agents and Agent architectures

overviews of performance. Trace data can be seamlessly collected in platforms like Google
Cloud Trace, which visualize and search across vast quantities of traces, streamlining root
cause analysis.

Cherish Human Feedback: Guiding Your Automation

Human feedback is not an annoyance to be dealt with; it is the most valuable and data-

rich resource you have for improving your agent. When a user files a bug report or clicks
the "thumbs down" button, they are giving you a gift: a new, real-world edge case that

your automated eval scenarios missed. Collecting and aggregating this data is critical;

when you see a statistically significant number of similar reports or metric dips, you must
tie the occurrences back to your analytics platform to generate insights and trigger alerts
for operational issues. An effective Agent Ops process "closes the loop" by capturing this
feedback, replicating the issue, and converting that specific scenario into a new, permanent
test case in your evaluation dataset. This ensures you not only fix the bug but also vaccinate
the system against that entire class of error ever happening again.

Agent Interoperability

Once you build your high quality agents, you want to be able to interconnect them with users
and other agents. In our body parts analogy, this would be the face of the Agent. There is
a difference between connecting to agents versus connecting agents with data and APIs;
Agents are not tools?. Let’s assume you already have tools wired into your agents, now let’s

consider how you bring your agents into a wider ecosystem.

November 2025 31

https://discuss.google.dev/t/agents-are-not-tools/192812

Introduction to Agents and Agent architectures

Agents and Humans

The most common form of agent-human interaction is through a user interface. In its
simplest form, this is a chatbot, where a user types a request and the agent, acting as a
backend service, processes it and returns a block of text. More advanced agents can provide
structured data, like JSON, to power rich, dynamic front-end experiences. Human in the

loop (HITL) interaction patterns include intent refinement, goal expansion, confirmation, and
clarification requests.

Computer use is a category of tool where the LM takes control of a user interface, often with
human interaction and oversight. A computer use enabled agent can decide that the next
best action is to navigate to a new page, highlight a specific button, or pre-fill a form with
relevant information?.

Instead of an agent using an interface on behalf of the user, the LM can change the Ul to
meet the needs of the moment. This can be done with Tools which control Ul (MCP UI)?, or
specialized Ul messaging systems which can sync client state with an agent (AG UI)¥, and
even generation of bespoke interfaces (A2U1)%.

Of course, human interaction is not limited to screens and keyboards. Advanced agents are
breaking the text barrier and moving into real-time, multimodal communication with "live
mode" creating a more natural, human-like connection. Technologies like the Gemini Live
API®' enable bidirectional streaming, allowing a user to speak to an agent and interrupt it, just
as they would in a natural conversation.

This capability fundamentally changes the nature of agent-human collaboration. With access

to a device's camera and microphone, the agent can see what the user sees and hear what
they say, responding with generated speech at a latency that mimics human conversation.

November 2025 32

https://arxiv.org/abs/2310.03691
https://mcpui.dev/
https://docs.ag-ui.com/introduction
https://github.com/google/A2UI
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash-live-api
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash-live-api

Introduction to Agents and Agent architectures

This opens up a vast array of use cases that are simply impossible with text, from a
technician receiving hands-free guidance while repairing a piece of equipment to a shopper
getting real-time style advice. It makes the agent a more intuitive and accessible partner.

Agents and Agents

Just as agents must connect with humans, they must also connect with each other. As an
enterprise scales its use of Al, different teams will build different specialized agents. Without
a common standard, connecting them would require building a tangled web of brittle, custom
APl integrations that are impossible to maintain. The core challenge is twofold: discovery
(how does my agent find other agents and know what they can do?) and communication (how
do we ensure they speak the same language?).

The Agent2Agent (A2A) protocol is the open standard designed to solve this problem. It
acts as a universal handshake for the agentic economy. A2A allows any agent to publish a
digital "business card," known as an Agent Card. This simple JSON file advertises the agent's
capabilities, its network endpoint, and the security credentials required to interact with it.
This makes discovery simple and standardized. As opposed to MCP which focuses on solving
transactional requests, Agent 2 Agent communication is typically for additional problem
solving.

Once discovered, agents communicate using a task-oriented architecture. Instead of a
simple request-response, interactions are framed as asynchronous "tasks." A client agent
sends a task request to a server agent, which can then provide streaming updates as it works
on the problem over a long-running connection. This robust, standardized communication
protocol is the final piece of the puzzle, enabling the collaborative, Level 3 multi-agent
systems that represent the frontier of automation. A2A transforms a collection of isolated
agents into a true, interoperable ecosystem.

November 2025 33

Introduction to Agents and Agent architectures

Agents and Money

As Al agents do more tasks for us, a few of those tasks involve buying or selling, negotiating
or facilitating transactions. The current web is built for humans clicking "buy," the
responsibility is on the human. If an autonomous agent clicks “buy” it creates a crisis of
trust - if something goes wrong, who is at fault? These are complex issues of authorization,
authenticity, and accountability. To unlock a true agentic economy, we need new standards
that allow agents to transact securely and reliably on behalf of their users.

This emerging area is far from established, but two key protocols are paving the way. The
Agent Payments Protocol (AP2) is an open protocol designed to be the definitive language
for agentic commerce. It extends protocols like A2A by introducing cryptographically-signed
digital "mandates.” These act as verifiable proof of user intent, creating a non-repudiable
audit trail for every transaction. This allows an agent to securely browse, negotiate, and
transact on a global scale based on delegated authority from the user. Complementing this
is x402, an open internet payment protocol that uses the standard HTTP 402 "Payment
Required" status code. It enables frictionless, machine-to-machine micropayments, allowing
an agent to pay for things like APl access or digital content on a pay-per-use basis without
needing complex accounts or subscriptions. Together, these protocols are building the
foundational trust layer for the agentic web.

Securing a Single Agent: The Trust Trade-Off

When you create your first Al agent, you immediately face a fundamental tension: the
trade-off between utility and security. To make an agent useful, you must give it power—the
autonomy to make decisions and the tools to perform actions like sending emails or querying
databases. However, every ounce of power you grant introduces a corresponding measure of
risk. The primary security concerns are rogue actions—unintended or harmful behaviors—

November 2025 34

Introduction to Agents and Agent architectures

and sensitive data disclosure. You want to give your agent a leash long enough to do its
job, but short enough to keep it from running into traffic, especially when that traffic involves
irreversible actions or your company's private data.??

To manage this, you cannot rely solely on the Al model's judgment, as it can be manipulated
by techniques like prompt injection®. Instead, the best practice is a hybrid, defense-in-

depth approach.®* The first layer consists of traditional, deterministic guardrails—a set of

hardcoded rules that act as a security chokepoint outside the model's reasoning. This could
be a policy engine that blocks any purchase over $100 or requires explicit user confirmation
before the agent can interact with an external API. This layer provides predictable, auditable
hard limits on the agent's power.

The second layer leverages reasoning-based defenses, using Al to help secure Al. This
involves training the model to be more resilient to attacks (adversarial training) and employing
smaller, specialized "guard models" that act like security analysts. These models can examine
the agent's proposed plan before it's executed, flagging potentially risky or policy-violating
steps for review. This hybrid model, combining the rigid certainty of code with the contextual
awareness of Al, creates a robust security posture for even a single agent, ensuring its power
is always aligned with its purpose.

Agent Identity: A New Class of Principal

In the traditional security model, there are human users which might use OAuth or SSO,

and there are services which use IAM or service accounts. Agents add a 3rd category of
principle. An agent is not merely a piece of code; it is an autonomous actor, a new kind of
principal that requires its own verifiable identity. Just as employees are issued an ID badge,
each agent on the platform must be issued a secure, verifiable "digital passport." This Agent

November 2025 35

https://simonwillison.net/series/prompt-injection/
https://storage.googleapis.com/gweb-research2023-media/pubtools/1018686.pdf
https://storage.googleapis.com/gweb-research2023-media/pubtools/1018686.pdf

Introduction to Agents and Agent architectures

Identity is distinct from the identity of the user who invoked it and the developer who built it.
This is a fundamental shift in how we must approach Identity and Access Management (IAM)
in the enterprise.

Having each identity be verified and having access controls for all of them, is the bedrock
of agent security. Once an agent has a cryptographically verifiable identity (often using
standards like SPIFFE®), it can be granted its own specific, least-privilege permissions. The
SalesAgent is granted read/write access to the CRM, while the HRonboardingAgent is
explicitly denied. This granular control is critical. It ensures that even if a single agent is
compromised or behaves unexpectedly, the potential blast radius is contained. Without

an agent identity construct, agents cannot work on behalf of humans with limited
delegated authority.

Principal entity Authentication / Verification Notes
Users Authenticated with OAuth Human actors with full
or SSO autonomy and responsibility for

their actions

Agents (new category of Verified with SPIFFE Agents have delegated
principles) authority, taking actions on
behalf of users

Service accounts Integrated into IAM Applications and containers,
fully deterministic, no
responsible for actions

Table 1: A non-exhaustive example of different categories of actors for authentication

November 2025 36

https://spiffe.io/

Introduction to Agents and Agent architectures

Policies to Constrain Access

A policy is a form of authorization (AuthZz), distinct from authentication (AuthN). Typically,
policies limit the capabilities of a principal; for example, “Users in Marketing can only access
these 27 APl endpoints and cannot execute DELETE commands.” As we develop agents, we
need to apply permissions to the agents, their tools, other internal agents, context they can
share, and remote agents. Think about it this way: if you add all the APIs, data, tools, and
agents to your system, then you must constrain access to a subset of just those capabilities
required to get their jobs done. This is the recommended approach: applying the principle of
least privilege while remaining contextually relevant.®

Securing an ADK Agent

With the core principles of identity and policy established, securing an agent built with the
Agent Development Kit (ADK) becomes a practical exercise in applying those concepts
through code and configuration®.

As described above, the process requires a clear definition of identities: user account (for
example OAuth), service account (to run code), agent identity (to use delegated authority).
Once authentication is handled, the next layer of defense involves establishing policies to
constrain access to services. This is often done at the API governance layer, along with
governance supporting MCP and A2A services.

The next layer is building guardrails into your tools, models, and sub-agents to enforce
policies. This ensures that no matter what the LM reasons or what a malicious prompt
might suggest, the tool's own logic will refuse to execute an unsafe or out-of-policy action.
This approach provides a predictable and auditable security baseline, translating abstract
security policies into concrete, reliable code®®.

November 2025 37

https://openreview.net/pdf?id=l9rATNBB8Y
https://google.github.io/adk-docs/safety/
https://google.github.io/adk-docs/callbacks/design-patterns-and-best-practices/#guardrails-policy-enforcement

Introduction to Agents and Agent architectures

For more dynamic security that can adapt to the agent's runtime behavior, ADK provides
Callbacks and Plugins. A before_tool_callback allows you to inspect the parameters
of a tool call before it runs, validating them against the agent's current state to prevent
misaligned actions. For more reusable policies, you can build plugins. A common pattern is a
"Gemini as a Judge"* that uses a fast, inexpensive model like Gemini Flash-Lite or your own
fine-tuned Gemma model to screen user inputs and agent outputs for prompt injections or
harmful content in real time.

For organizations that prefer a fully managed, enterprise-grade solution for these dynamic
checks, Model Armor can be integrated as an optional service. Model Armor acts as a
specialized security layer that screens prompts and responses for a wide range of threats,
including prompt injection, jailbreak attempts, sensitive data (Pll) leakage, and malicious
URLs*°. By offloading these complex security tasks to a dedicated service, developers can
ensure consistent, robust protection without having to build and maintain these guardrails
themselves. This hybrid approach within ADK—combining strong identity, deterministic in-tool
logic, dynamic Al-powered guardrails, and optional managed services like Model Armor—is
how you build a single agent that is both powerful and trustworthy.

November 2025 38

https://cloud.google.com/security-command-center/docs/model-armor-overview
https://cloud.google.com/security-command-center/docs/model-armor-overview

Introduction to Agents and Agent architectures

Figure 6: Security and Agents from https://saif.google/focus-on-agents

Scaling Up from a Single Agent to an Enterprise Fleet

The production success of a single Al agent is a triumph. Scaling to a fleet of hundreds

is a challenge of architecture. If you are building one or two agents, your concerns are
primarily about security. If you are building many agents, you must design systems to handle
much more. Just like API sprawl, when agents and tools proliferate across an organization,

November 2025 39

https://saif.google/focus-on-agents

Introduction to Agents and Agent architectures

they create a new, complex network of interactions, data flows, and potential security
vulnerabilities. Managing this complexity requires a higher-order governance layer integrating
all your identities and policies and reporting into a central control plane.

Security and Privacy: Hardening the Agentic Frontier

An enterprise-grade platform must address the unique security and privacy challenges
inherent to generative Al, even when only a single agent is running. The agent itself becomes
a new attack vector. Malicious actors can attempt prompt injection to hijack the agent's
instructions, or data poisoning to corrupt the information it uses for training or RAG.
Furthermore, a poorly constrained agent could inadvertently leak sensitive customer data or
proprietary information in its responses.

A robust platform provides a defense-in-depth strategy to mitigate these risks. It starts with
the data, ensuring that an enterprise's proprietary information is never used to train base
models and is protected by controls like VPC Service Controls. It requires input and output
filtering, acting like a firewall for prompts and responses. Finally, the platform must offer
contractual protections like intellectual property indemnity for both the training data and the
generated output, giving enterprises the legal and technical confidence they need to deploy
agents in production.

Agent Governance: A Control Plane instead of Sprawl

As agents and their tools proliferate across an organization, they create a new, complex
network of interactions and potential vulnerabilities, a challenge often called "agent sprawl."
Managing this requires moving beyond securing individual agents to implementing a higher-
order architectural approach: a central gateway that serves as a control plane for all
agentic activity.

November 2025 40

Introduction to Agents and Agent architectures

Imagine a bustling metropolis with thousands of autonomous vehicles—users, agents, and
tools—all moving with purpose. Without traffic lights, license plates and a central control
system, chaos would reign. The gateway approach creates that control system, establishing

a mandatory entry point for all agentic traffic, including user-to-agent prompts or Ul
interactions, agent-to-tool calls (via MCP), agent-to-agent collaborations (via A2A), and direct
inference requests to LMs. By sitting at this critical intersection, an organization can inspect,
route, monitor, and manage every interaction.

This control plane serves two primary, interconnected functions:

1. Runtime Policy Enforcement: It acts as the architectural chokepoint for implementing
security. It handles authentication ("Do | know who this actor is?") and authorization (Do
they have permission to do this?"). Centralizing enforcement provides a "single pane of
glass" for observability, creating common logs, metrics, and traces for every transaction.
This transforms the spaghetti of disparate agents and workflows into a transparent and
auditable system.

2. Centralized Governance: To enforce policies effectively, the gateway needs a source
of truth. This is provided by a central registry—an enterprise app store for agents and
tools. This registry allows developers to discover and reuse existing assets, preventing
redundant work, while giving administrators a complete inventory. More importantly,
it enables a formal lifecycle for agents and tools, allowing for security reviews before
publication, versioning, and the creation of fine-grained policies that dictate which
business units can access which agents.

By combining a runtime gateway with a central governance registry, an organization
transforms the risk of chaotic sprawl into a managed, secure, and efficient ecosystem.

November 2025 M

Introduction to Agents and Agent architectures

Cost and Reliability: The Infrastructure Foundation

Ultimately, enterprise-grade agents must be both reliable and cost-effective. An agent

that frequently fails or provides slow results has a negative ROIl. Conversely, an agent

that is prohibitively expensive cannot scale to meet business demands. The underlying
infrastructure must be designed to manage this trade-off, securely and with regulatory and
data sovereignty compliance.

In some cases, the feature you need is scale-to-zero, when you have irregular traffic to
a specific agent or sub-function. For mission-critical, latency-sensitive workloads, the
platform must offer dedicated, guaranteed capacity, such as Provisioned Throughput* for

LM services or 99.9% Service Level Agreements (SLAs) for runtimes like Cloud Run“2. This
provides a predictable performance, ensuring that your most important agents are always
responsive, even under heavy load. By providing this spectrum of infrastructure options,
coupled with comprehensive monitoring for both cost and performance, you establish the
final, essential foundation for scaling Al agents from a promising innovation into a core,
reliable component of the enterprise.

How agents evolve and learn

Agents deployed in the real world operate in dynamic environments where policies,
technologies, and data formats are constantly changing. Without the ability to adapt,
an agent's performance will degrade over time—a process often called "aging"—leading
to a loss of utility and trust. Manually updating a large fleet of agents to keep pace with
these changes is uneconomical and slow. A more scalable solution is to design agents
that can learn and evolve autonomously, improving their quality on the job with minimal
engineering effort.*?

November 2025

https://cloud.google.com/vertex-ai/generative-ai/docs/provisioned-throughput/overview
https://cloud.google.com/run/sla?e=48754805&hl=en
https://github.com/CharlesQ9/Self-Evolving-Agents
https://github.com/CharlesQ9/Self-Evolving-Agents

Introduction to Agents and Agent architectures

How agents learn and self evolve

Much like humans, agents learn from experience and external signals. This learning process is
fueled by several sources of information:

» Runtime Experience: Agents learn from runtime artifacts such as session logs,
traces, and memory, which capture successes, failures, tool interactions, and decision
trajectories. Crucially, this includes Human-in-the-Loop (HITL) feedback, which provides
authoritative corrections and guidance.

« External Signals: Learning is also driven by new external documents, such as updated
enterprise policies, public regulatory guidelines, or critiques from other agents.

This information is then used to optimize the agent’s future behavior. Instead of simply
summarizing past interactions, advanced systems create generalizable artifacts to guide
future tasks. The most successful adaptation techniques fall into two categories:

« Enhanced Context Engineering: The system continuously refines its prompts, few-
shot examples, and the information it retrieves from memory. By optimizing the context
provided to the LM for each task, it increases the likelihood of success.

« Tool Optimization and Creation: The agent’s reasoning can identify gaps in its
capabilities and act to fill them. This can involve gaining access to a new tool, creating a
new one on the fly (e.g., a Python script), or modifying an existing tool (e.g., updating an
APl schema).

Additional optimization techniques, such as dynamically reconfiguring multi-agent design

patterns or using Reinforcement Learning from Human Feedback (RLHF), are active areas
of research.

November 2025 43

Introduction to Agents and Agent architectures

Example: Learning New Compliance Guidelines

Consider an enterprise agent operating in a heavily regulated industry like finance or life
sciences. Its task is to generate reports that must comply with privacy and regulatory rules
(e.g., GDPR).

This can be implemented using a multi-agent workflow:

1. A Querying Agent retrieves raw data in response to a user request.

2. A Reporting Agent synthesizes this data into a draft report.

3. A Critiquing Agent, armed with known compliance guidelines, reviews the report. If it
encounters ambiguity or requires final sign-off, it escalates to a human domain expert.

4. A Learning Agent observes the entire interaction, paying special attention to the
corrective feedback from the human expert. It then generalizes this feedback into a new,
reusable guideline (e.g., an updated rule for the critiquing agent or refined context for the
reporting agent).

November 2025 44

Introduction to Agents and Agent architectures

Figure 7: Sample multi agent workflow for compliance guidelines

For instance, if a human expert flags that certain household statistics must be anonymized,
the Learning Agent records this correction. The next time a similar report is generated,

the Critiquing Agent will automatically apply this new rule, reducing the need for human
intervention. This loop of critique, human feedback, and generalization allows the system to
autonomously adapt to evolving compliance requirements*4.

November 2025 45

Introduction to Agents and Agent architectures

Simulation and Agent Gym - the next frontier

The design pattern we presented can be categorized as in-line learning, where agents

need to learn with the resources and design pattern they were engineered with. More
advanced approaches are now being researched, where there is a dedicated platform that is
engineered to optimize the multi-agent system in offline processes with advanced tooling and
capabilities, which are not part of the multi-agent run-time environment. The key attributes of
such an Agent Gym*® are:

1. Itis not in the execution path. It is a standalone off-production platform, and therefore can
have the assistance of any LM model, and offline tools, cloud application and more

2. It offers a simulation environment, so the agent can ‘exercise’ on new data and learn. This
simulation environment is excellent for ‘trial-and-error’ with many optimizations pathways

3. It can call advance synthetic data generators, which guide the simulation to be as real as
possible, and pressure test the agent (this can include advance techniques, such as red-
teaming, dynamic evaluation and a family of critiquing agents)

4. The arsenal of the optimization tools is not fixed, and it can adopt new tools (either
through open protocols such as MCP or A2A), or in a more advanced setting - learn new
concepts and craft tools around them

5. Finally, even constructs such as Agent Gym, may not be able to overcome certain edge-
case (due to the well known problem of ‘tribal knowledge’ in the enterprise). In those cases
we see the Agent Gym able to connect to the human fabric of domain experts, and consult
with them on the right set of outcomes to guide the next set of optimizations

November 2025 46

https://arxiv.org/abs/2502.14499

Introduction to Agents and Agent architectures

Examples of advanced agents

Google Co-Scientist

Co-Scientist is an advanced Al agent designed to function as a virtual research collaborator,

accelerating scientific discovery by systematically exploring complex problem spaces. It
enables researchers to define a goal, ground the agent in specified public and proprietary
knowledge sources, and then generate and evaluate a landscape of novel hypotheses.

In order to be able to achieve this, Co-Scientist spawns a whole ecosystem of agents
collaborating with each other.

Figure 8: The Al co-scientist design system

November 2025

47

Introduction to Agents and Agent architectures

Think of the system as a research project manager. The Al first takes a broad research
goal and creates a detailed project plan. A "Supervisor" agent then acts as the manager,
delegating tasks to a team of specialized agents and distributing resources like computing
power. This structure ensures the project can easily scale up and that the team's methods
improve as they work toward the final goal.

Figure 9: Co-scientist multi agent workflow
The various agents work for hours, or even days, and keep improving the generated

hypotheses, running loops and meta loops that improve not only the generated ideas, but
also the way that we judge and create new ideas.

November 2025

48

Introduction to Agents and Agent architectures

AlphaEvolve Agent

Another example of an advanced agentis system is AlphaEvolve, an Al agent that discovers
and optimizes algorithms for complex problems in mathematics and computer science.

AlphaEvolve works by combining the creative code generation of our Gemini language
models with an automated evaluation system. It uses an evolutionary process: the Al
generates potential solutions, an evaluator scores them, and the most promising ideas are
used as inspiration for the next generation of code.

This approach has already led to significant breakthroughs, including:

+ Improving the efficiency of Google's data centers, chip design, and Al training.

« Discovering faster matrix multiplication algorithms.

« Finding new solutions to open mathematical problems.

AlphaEvolve excels at problems where verifying the quality of a solution is far easier than
finding it in the first place.

Figure 10: Alpha Evolve design system

November 2025

49

Introduction to Agents and Agent architectures

AlphaEvolve is designed for a deep, iterative partnership between humans and Al. This
collaboration works in two main ways:

« Transparent Solutions: The Al generates solutions as human-readable code. This
transparency allows users to understand the logic, gain insights, trust the results, and
directly modify the code for their needs.

« Expert Guidance: Human expertise is essential for defining the problem. Users guide the
Al by refining evaluation metrics and steering the exploration, which prevents the system
from exploiting unintended loopholes in the problem's definition. This interactive loop
ensures the final solutions are both powerful and practical.

The result of the agent is a continuous improvement of the code that keeps improving the
metrics specified by the human.

Figure 11: Algorithm evolution

November 2025 50

Introduction to Agents and Agent architectures

Conclusion

Generative Al agents mark a pivotal evolution, shifting artificial intelligence from a passive
tool for content creation to an active, autonomous partner in problem-solving. This document
has provided a formal framework for understanding and building these systems, moving
beyond the prototype to establish a reliable, production-grade architecture.

We have deconstructed the agent into its three essential components: the reasoning
Model (the "Brain"), the actionable Tools (the "Hands"), and the governing Orchestration
Layer (the "Nervous System"). It is the seamless integration of these parts, operating in a
continuous "Think, Act, Observe" loop, that unlocks an agent's true potential. By classifying
agentic systems- from the Level 1 Connected Problem-Solver to the Level 3 Collaborative
Multi-Agent System -architects and product leaders can now strategically scope their
ambitions to match the complexity of the task at hand.

The central challenge, and opportunity, lies in a new developer paradigm. We are no longer
simply "bricklayers" defining explicit logic; we are "architects" and "directors" who must
guide, constrain, and debug an autonomous entity. The flexibility that makes LMs so powerful
is also the source of their unreliability. Success, therefore, is not found in the initial prompt
alone, but in the engineering rigor applied to the entire system: in robust tool contracts,
resilient error handling, sophisticated context management, and comprehensive evaluation.

The principles and architectural patterns outlined here serve as a foundational blueprint.
They are the guideposts for navigating this new frontier of software, enabling us to build not
just "workflow automation," but truly collaborative, capable, and adaptable new members
of our teams. As this technology matures, this disciplined, architectural approach will be the
deciding factor in harnessing the full power of agentic Al.

November 2025 51

Introduction to Agents and Agent architectures

Endnotes

1.

10.

1.

12.

13.

14.

15.

16.

17.

Julia Wiesinger, Patrick Marlow, et al. 2024 “Agents”.
Available at: https://www.kaggle.com/whitepaper-agents.

Antonio Gulli, Lavi Nigam, et al. 2025 “Agents Companion”.
Available at: https://www.kaggle.com/whitepaper-agent-companion.

Shunyu Yao, Y. et al., 2022, 'ReAct: Synergizing Reasoning and Acting in Language Models".
Available at: https://arxiv.org/abs/2210.03629.

Wei, J., Wang, X. et al.,, 2023, 'Chain-of-Thought Prompting Elicits Reasoning in Large Language Models".
Available at: https://arxiv.org/pdf/2201.11903.pdf.

Shunyu Yao, Y. et al., 2022, 'ReAct: Synergizing Reasoning and Acting in Language Models'.
Available at: https://arxiv.org/abs/2210.03629.

https://www.amazon.com/Agentic-Design-Patterns-Hands-Intelligent/dp/3032014018

Shunyu Yao, et. al., 2024, ‘t-bench: A Benchmark for Tool-Agent-User Interaction in Real-World Domains’,
Available at: https://arxiv.org/abs/2406.12045.

https://artificialanalysis.ai/quide

https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/vertex-ai-model-optimizer

https://gemini.google/overview/gemini-live/

https://cloud.google.com/vision?e=48754805&hl=en

https://cloud.google.com/speech-to-text?e=48754805&hl=en

https://medium.com/google-cloud/genaiops-operationalize-generative-ai-a-
practical-quide-d5bedaa59d78

https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/code-execution/overview

https://ai.google.dev/gemini-api/docs/function-calling

https://github.com/modelcontextprotocol/

https://ai.google.dev/gemini-api/docs/google-search

November 2025

https://www.kaggle.com/whitepaper-agents
https://www.kaggle.com/whitepaper-agent-companion
https://arxiv.org/abs/2210.03629
https://arxiv.org/pdf/2201.11903.pdf
https://arxiv.org/abs/2210.03629
https://www.amazon.com/Agentic-Design-Patterns-Hands-Intelligent/dp/3032014018
https://arxiv.org/abs/2406.12045
https://artificialanalysis.ai/guide
https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/vertex-ai-model-optimizer
https://gemini.google/overview/gemini-live
https://cloud.google.com/vision?e=48754805&hl=en
https://cloud.google.com/speech-to-text?e=48754805&hl=en
https://medium.com/google-cloud/genaiops-operationalize-generative-ai-a- practical-guide-d5bedaa59d7
https://medium.com/google-cloud/genaiops-operationalize-generative-ai-a- practical-guide-d5bedaa59d7
https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/code-execution/overview
https://ai.google.dev/gemini-api/docs/function-calling
https://github.com/modelcontextprotocol/
https://ai.google.dev/gemini-api/docs/google-search

Introduction to Agents and Agent architectures

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

34.

35.

36.

3.

https://google.github.io/adk-docs/

https://google.github.io/adk-docs/sessions/memory/

https://cloud.google.com/architecture/choose-design-pattern-agentic-ai-system

https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/overview

https://cloud.google.com/kubernetes-engine/docs/concepts/gke-and-cloud-run

https://github.com/GoogleCloudPlatform/agent-starter-pack

Sokratis Kartakis, 2024, ‘GenAl in Production: MLOps or GenAlOps?’. Available at: https://medium.com/
google-cloud/genai-in-production-mlops-or-genaiops-25691c9becdO.

Guangya Liu, Sujay Solomon, March 2025 “Al Agent Observability - Evolving Standards and Best Practice”.
Available at: https://opentelemetry.io/blog/2025/ai-agent-observability/.

https://discuss.google.dev/t/agents-are-not-tools/192812

Damien Masson et. al, 2024, ‘DirectGPT: A Direct Manipulation Interface to Interact with Large Language
Models’. Available at: https://arxiv.org/abs/2310.03691.

MCP Ul is a system of controlling Ul via MCP tools https://mcpui.dev/.

AG Ul is a protocol of controlling Ul via event passing and optionally shared state https://ag-ui.com/.

A2Ul is a protocol of generating Ul via structured output and A2A message
passing https://github.com/google/A2UlI.

https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash-live-api.

https://saif.google/focus-on-agents.

https://simonwillison.net/series/prompt-injection/.

https://storage.googleapis.com/gweb-research2023-media/pubtools/1018686.pdf.

https:/spiffe.io/.

https://openreview.net/pdf?id=19rATNBBS8Y.

https://google.github.io/adk-docs/safety/.

November 2025 53

https://google.github.io/adk-docs/
https://google.github.io/adk-docs/sessions/memory/
https://cloud.google.com/architecture/choose-design-pattern-agentic-ai-system
https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/overview
https://cloud.google.com/kubernetes-engine/docs/concepts/gke-and-cloud-run
https://github.com/GoogleCloudPlatform/agent-starter-pack
https://medium.com/google-cloud/genai-in-production-mlops-or-genaiops-25691c9becd0
https://medium.com/google-cloud/genai-in-production-mlops-or-genaiops-25691c9becd0
https://opentelemetry.io/blog/2025/ai-agent-observability/
https://discuss.google.dev/t/agents-are-not-tools/192812
https://arxiv.org/abs/2310.03691
https://mcpui.dev/
https://ag-ui.com/
https://github.com/google/A2UI
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash-live-api
https://saif.google/focus-on-agents
https://simonwillison.net/series/prompt-injection/
https://storage.googleapis.com/gweb-research2023-media/pubtools/1018686.pdf
https://spiffe.io/
https://openreview.net/pdf?id=l9rATNBB8Y
https://google.github.io/adk-docs/safety/

Introduction to Agents and Agent architectures

38. https://google.github.io/adk-docs/callbacks/design-patterns-and-best-practices
/#tquardrails-policy-enforcement

39. TKTK

40. https://cloud.google.com/security-command-center/docs/model-armor-overview

41. https://cloud.google.com/vertex-ai/generative-ai/docs/provisioned-throughput/overview

42. https://cloud.google.com/run/sla

43. https://github.com/CharlesQ9/Self-Evolving-Agents

44. Juraj Gottweis, et. al., 2025, ‘Accelerating scientific breakthroughs with an Al co-scientist’. Available
at: https://research.google/blog/accelerating-scientific-breakthroughs-with-an-ai-co-scientist/.

45. Deepak Nathani et. al. 2025, ‘"MLGym: A New Framework and Benchmark for Advancing Al Research Agents’,
Available at: https://arxiv.org/abs/2502.14499.

November 2025 54

https://google.github.io/adk-docs/callbacks/design-patterns-and-best-practices /#guardrails-policy-e
https://google.github.io/adk-docs/callbacks/design-patterns-and-best-practices /#guardrails-policy-e
https://cloud.google.com/security-command-center/docs/model-armor-overview
https://cloud.google.com/vertex-ai/generative-ai/docs/provisioned-throughput/overview
https://cloud.google.com/run/sla
https://github.com/CharlesQ9/Self-Evolving-Agents
https://research.google/blog/accelerating-scientific-breakthroughs-with-an-ai-co-scientist/
https://arxiv.org/abs/2502.14499

	From Predictive AI to Autonomous Agents
	Introduction to AI Agents
	The Agentic Problem-Solving Process

	A Taxonomy of Agentic Systems
	Level 0: The Core Reasoning System
	Level 1: The Connected Problem-Solver
	Level 2: The Strategic Problem-Solver
	Level 3: The Collaborative Multi-Agent System
	Level 4: The Self-Evolving System

	Core Agent Architecture: Model, Tools, and Orchestration
	Model: The “Brain” of your AI Agent
	Tools: The "Hands" of your AI Agent
	Retrieving Information: Grounding in Reality
	Executing Actions: Changing the World
	Function Calling: Connecting Tools to your Agent

	The Orchestration Layer
	Core Design Choices
	Instruct with Domain Knowledge and Persona
	Augment with Context
	Multi-Agent Systems and Design Patterns

	Agent Deployment and Services
	Agent Ops: A Structured Approach to the Unpredictable
	Measure What Matters: Instrumenting Success Like an A/B Experiment
	Quality Instead of Pass/Fail: Using a LM Judge
	Metrics-Driven Development: Your Go/No-Go for Deployment
	Debug with OpenTelemetry Traces: Answering "Why?"
	Cherish Human Feedback: Guiding Your Automation

	Agent Interoperability
	Agents and Humans
	Agents and Agents
	Agents and Money

	Securing a Single Agent: The Trust Trade-Off
	Agent Identity: A New Class of Principal
	Policies to Constrain Access
	Securing an ADK Agent

	Scaling Up from a Single Agent to an Enterprise Fleet
	Security and Privacy: Hardening the Agentic Frontier
	Agent Governance: A Control Plane instead of Sprawl

	How agents evolve and learn
	How agents learn and self evolve
	Simulation and Agent Gym - the next frontier

	Examples of advanced agents
	Google Co-Scientist
	AlphaEvolve Agent

	Conclusion
	Endnotes

