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Large Language Models (LLMs) often struggle with problems that require multi-step reasoning. For
small-scale open-source models, Reinforcement Learning with Verifiable Rewards (RLVR) fails when
correct solutions are rarely sampled even after many attempts, while Supervised Fine-Tuning (SFT)
tends to overfit long demonstrations through rigid token-by-token imitation. To address this gap, we
propose Supervised Reinforcement Learning (SRL), a framework that reformulates problem solving
as generating a sequence of logical “actions”. SRL trains the model to generate an internal reasoning
monologue before committing to each action. It provides smoother rewards based on the similarity
between the model’s actions and expert actions extracted from the SFT dataset in a step-wise manner.
This supervision offers richer learning signals even when all rollouts are incorrect, while encouraging
flexible reasoning guided by expert demonstrations. As a result, SRL enables small models to learn
challenging problems previously unlearnable by SFT or RLVR. Moreover, initializing training with SRL
before refining with RLVR yields the strongest overall performance. Beyond reasoning benchmarks, SRL
generalizes effectively to agentic software engineering tasks, establishing it as a robust and versatile
training framework for reasoning-oriented LLMs.
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Figure 1 | Performance of our method (SRL) against baselines on math reasoning benchmarks, with
all models trained on the challenging s1k dataset (Muennighoff et al., 2025). Our key observations
are: (1) Directly applying SFT on this dataset leads to performance degradation compared to the
base model. (2) While RLVR can improve generalization over SFT, the gains are marginal. (3) Our
proposed SRL method substantially outperforms these baselines, and the SRL. — RLVR pipeline
achieves the highest performance, overcoming the challenges of training on difficult data.

1. Introduction

Large Language Models (LLMs) have shown impressive capabilities across a range of reasoning tasks,
including solving math problems (Wang et al., 2025), generating code (Jiang et al., 2024), and agent
planning (Li et al., 2025c; Xie et al., 2024). A significant recent advancement comes from leveraging
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reinforcement learning (RL) to enhance LLMs’ complex reasoning abilities (Ahmadian et al., 2024;
Lambert et al., 2024; Shao et al., 2024). By optimizing models with reward signals based on verifiable
outcomes, such as the correctness of a final answer, RL offers a scalable and promising path to elicit
beneficial problem-solving strategies such as self-reflection (Guo et al., 2025; Xie et al., 2025).

The effectiveness of these outcome-based RL methods fundamentally depends on the policy
model’s ability to discover correct solutions within a limited rollout budget (Brown et al., 2024).
However, given practical computational constraints, this learning paradigm struggles on challenging
problems from the training data, where the model’s success rate is effectively zero (when the pass@k
rate remains zero even after sampling k rollouts). Such cases are increasingly common in tasks
requiring complex, multi-step reasoning (Wang et al., 2024; Yue et al., 2025). For these problems,
an incorrect intermediate step can derail the entire reasoning chain for a 7B-scale LLM, resulting
negative learning signals regardless of any partially correct solutions. Furthermore, naively penalizing
all incorrect final outputs can further introduce training instability and hinder progress, making these
difficult reasoning tasks largely intractable for standard outcome-based RL methods (Xiong et al.,
2025).

An alternative approach is imitation learning, commonly implemented via Supervised Fine-Tuning
(SFT) on expert demonstrations (Ross et al., 2011). While SFT can instill valuable reasoning behaviors,
its next-token prediction objective enforces rigid, token-level imitation, limiting the model’s ability to
generalize beyond the training data. This problem becomes particularly pronounced when training
data are modest in scale and when the model itself is relatively less capable. Under such conditions,
long and complex demonstrations often lead to overfitting and shallow reasoning behaviors (Chu
et al., 2025a; Li et al., 2025b), as illustrated by the performance decline in our Figure 1. Consequently,
both SFT and outcome-based RL struggle on challenging reasoning tasks, leaving a critical gap for
training small open-source models to effectively learn difficult problems.

To address this gap, we introduce Supervised Reinforcement Learning (SRL), a framework that
reformulates problem-solving as a sequential decision-making process. Rather than optimizing
for a final answer or imitating an entire expert trajectory, SRL trains the model to reproduce the
sequence of key actions underlying expert reasoning, following an RL-style objective. Specifically,
expert demonstrations are decomposed into a series of intermediate actions, each representing
a meaningful decision step. During training, the model first generates an internal monologue to
articulate its reasoning and then commits to an “action”. At every step, SRL provides a reward based
on the similarity between the model’s predicted action and the corresponding expert action, thereby
providing fine-grained, efficiently computable supervision that scales to large datasets.

Our work makes the following contributions:

* We propose SRL, a novel framework designed to enable effective learning on difficult reasoning
tasks where SFT and RLVR struggle, by providing dense and smooth rewards based on similarity

with expert actions.
* We demonstrate the effectiveness and robustness of SRL through extensive experiments on chal-

lenging mathematical reasoning and agentic software engineering benchmarks. Our results show

that SRL significantly outperforms strong baselines across both domains (5.1 & 5.3).
* Through detailed analysis, we show that granular guidance is vital to SRL’s reward and its impact

on model behavior. We observe that SRL induces flexible and sophisticated reasoning patterns, such
as interleaved planning and verification, which improve solution quality without simply increasing
output length (5.2).
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Figure 2 | Illustration of SRL as compared to RL(VR) and SFT. (@) RL(VR) takes a query as input
and performs k rollouts. The final answer correctness is used as the reward. (b) SFT uses both a
query x and a complete teacher response y as input, training with a per-token loss to maximize the
probability p(y|x). (c) SRL also uses a query and a teacher response. It breaks the response into step
actions and, at each step, uses the previous steps as context. The model generates a next step action
along with its step-wise inner thoughts, and the reward r is based on the similarity between the
model’s and the teacher’s action.

2. Related Work

2.1. SFT (Distillation) for LLM Reasoning.

Distilling reasoning into smaller models via SFT on teacher-generated long Chain-of-Thought (CoT)
rationales has proven highly effective for transferring complex problem-solving skills (Huang et al.,
2024; Li et al., 2023; Min et al., 2024; Yeo et al., 2025), as exemplified by the small models distilled
from DeepSeek R1 (Guo et al., 2025). Research indicates this process is surprisingly data-efficient,
with small, high-quality datasets often being sufficient (Muennighoff et al., 2025; Ye et al., 2025).
Given the success, research has focused on the underlying factor for effective SFT distillation (Chen
et al., 2025a). Some emphasized the logical structure of the reasoning trace rather than its semantic
correctness (Luo et al., 2025; Stechly et al., 2025), as models can learn from demonstrations with
factual errors (Li et al., 2025a). Moreover, significant challenges remain in the student-teacher gap
where the student fails to learn from overly complex data (Li et al., 2025b), and the risk of teacher
hacking, where the student overfits to a teacher’s specific flaws (Tiapkin et al., 2025). Ultimately,
distillation from a teacher model imposes a performance ceiling on the student (Huang et al., 2024).

2.2. RL for LLM Reasoning.

The development of DeepSeek-R1 (Guo et al., 2025) showed the effectiveness of rule-based RL
for enhancing the reasoning capabilities of LLMs. This approach utilizes a scalable reward system
based on final answer correctness, exemplified by the Group Relative Policy Optimization (GRPO)
algorithm (Shao et al., 2024) and parallel algorithms (Ahmadian et al., 2024; Lambert et al., 2024;
Xie et al., 2025). Building on this foundation, subsequent research has introduced numerous algo-
rithmic refinements. For example, Dr. GRPO (Liu et al., 2025) mitigates bias by removing variance
normalization, while DAPO (Yu et al., 2025) introduces a token-level loss and relaxes the policy
update constraint by increasing the clipping threshold. Other notable advancements include modifi-
cations to clipping methods, normalization techniques, the KL divergence loss, and dynamic sampling
strategies (Chen et al., 2025b; Chu et al., 2025b; Zhang and Zuo, 2025; Zhang et al., 2025). Despite
these algorithmic variations, these approaches primarily rely on the final outcome’s reward signal. A
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critical challenge arises when the rollouts fail to identify a correct solution trajectory, particularly for
difficult queries. DAPO (Yu et al., 2025), for instance, addresses this by filtering out instructions that
do not yield any successful rollouts.

3. Preliminaries

A Large Language Model (LLM) is formally defined by a probability distribution pg over sequences of
tokens, parameterized by a set of model weights 0. Given an input prompt, represented as a token

sequence X = [x1,...,X,], the model generates a response sequence y = [y1,...,¥m]. The response
is produced autoregressively, where the generation of the token y; at any step j is conditioned on
the initial prompt x and all preceding tokens in the generated sequence, (y1,...,yj-1). The joint

probability of the entire response sequence y given the prompt x is thus factorized as: pg(y|x) =
[T3 Pe(yilx, y1, - -, yj-1)-

Supervised Fine-Tuning (SFT). SFT is typically employed to specialize LLM for downstream appli-
cations or domains. It is also commonly used to establish a cold start for subsequent RL training
phases that requires certain reply format/pattern, such as RL for reasoning (Deng et al., 2025) or tool
use (Feng et al., 2025). Specifically, the process utilizes a dataset D = {(x?,y®)}¥_ , where each x
is an input prompt and y is the corresponding desired model output. The primary objective is to
update the parameters 6 to maximize the conditional probability of generating the target response y*)
given the input prompt x(?), This goal is formally achieved by minimizing the negative log-likelihood
loss function: Lspr(0) = — XN, log pe(y?|x?) over the entire dataset. By minimizing this loss, the
model learns to produce responses that are closely aligned with the exact words demonstrated in the
labeled training examples.

Reinforcement Learning (RL). Recent literature on improving model reasoning capability has
focused on RL with verifiable reward (RLVR), where the policy model receives reward signals purely
based on the final answer correctness. Building on this principle, Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) involves sampling a group of G response trajectories, {oi}le, from the
previous policy model, 0,4, for each input query x. The objective function for GRPO is:

G
1 1 Po (Oi,t | X, 0i,<t) A . Pe(Oi,t | X, 0i,<t)
E|l= Z min Ay, clip( ,
G 4 |oi| =1 P64 (Oi,t | X, 0i,<t) P64 (Oi,t | X, 0i,<t)

- B | po Il pre| (1)

1-¢1+ e)Ai,t)}

The hyperparameter ¢ > 0 defines the clipping range for the policy update ratio, and the coefficient
B > 0 modulates the influence of the KL-divergence penalty against the policy update. The term 6,4
refers to the policy from the previous iteration. The advantage function, A;, = (7; — mean(F))/std(7),
is defined as the group-level normalized reward.

A key challenge for these RL algorithms emerges when input queries are either too easy or too
hard, resulting in uniform correctness within policy rollouts {0;}% ;. In such cases, the advantage
estimate A;, vanishes, yielding an uninformative policy gradient and preventing model updates. A
common strategy to mitigate this is to dynamically sample the batches, filtering out samples and
re-sampling until the data sample satisfies O < |{0;|is_correct(o;)}| < G (Yu et al., 2025).
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4. Methodology

4.1. The challenge of hard reasoning problem

RL with verifiable outcome reward is a prominent technique for enhancing the reasoning capabil-
ities of LLMs. The strategy has been interpreted as closing the gap between a model’s potential
performance across multiple attempts (pass@k) (Brown et al., 2024; Yue et al., 2025). However,
this paradigm struggles on problems where the model’s pass@k rate is already near zero. For this
set of difficult problems, which we term Dy ,.q, positive reward signals are too sparse for RLVR to be
effective (Xiong et al., 2025). Moreover, simply penalizing incorrect outputs can be detrimental to
model performance (Xiong et al., 2025; Yu et al., 2025), creating a significant challenge for improving
model reasoning.

Formally, we define Dy,rq = {x©, a(")}fi 1 as the set of problems (x, a) where policy model’s success
rate is low with k samples: ¢ Zle I(ExtractAnswer(y")) == a) < ¢, where each solution attempt y/)
is sampled from the policy pg(-|x) and € > 0 is a small constant.

Due to the scarcity of successful trajectories, standard RL with verifiable reward struggles on
Dhard- Such data is further difficult to be learned by SFT, due to its limited amount and complexity in
teacher reasoning trajectories (Li et al., 2025b).

4.2. Supervised Reinforcement Learning (SRL)

To address the challenge of learning from Dy,.4, we introduce Supervised Reinforcement Learning
(SRL), a framework that decomposes complex problem-solving as a sequential decision-making
process, and thus can be easily learned on how to properly operate step-wise. Instead of generating a
monolithic solution, the model learns to take actions similar to the expert while producing their own
inner reasoning process in a step-by-step manner. The whole framework is illustrated in Figure 3.

Action-based problem formulation. Given an expert solution trajectory y that leads to a correct final
answer, we decompose y into a sequence of tuples: y = {yswep, }_,. Each steps represents a logical
action: the concrete action to be operated. This formulation is domain-agnostic; for instance, an
action in mathematical reasoning could be an algebraic manipulation, while for a software agent, it

could be a command executed in a code repository.

Step-wise training data construction. To create training data for SRL, we leverage a powerful
teacher model, O.,,r: to generate solution trajectories. From a single complete solution with N steps,
we construct N — 1 partial trajectories. For each step k € {1,..., N — 1}, we create a new input prompt
Xstep, = [X, Ystep;» - - - » Ystep,_, |, Where the model’s task is to predict the subsequent step, Ystep,. This
process transforms one expert solution into a rich set of training instances that teach the model to
proceed correctly from various intermediate states.

Learning with a sequence similarity reward with own inner monologue. Given a partial context
Xstep, COntaining the problem and a partial solution, the policy model pg is prompted to generate the
subsequent action step with their own inner monologue y;, . ., which is encapsulated by “<think>”"
tags. We then provide a dense reward based on the quality of the generated logical action yg,, . The
prediction can be formally specified as: y' ~ pe([Xstep,) = [¥fp;c0 y;tepk].

To guide training, we consider the reward function that measures the similarity between the
oo _2M
generated action: R(ygtepk,ystepk) = %7, where

%9

TEmpirically, we found that providing the subsquent step title (e.g., “2. **Coprime Pairs**” in Figure 3) as the additional
context for the learner to predict the rest of the step content can further boost the performance.
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Expert Trajectory: Step2 Context:
Question: ...
Given a rational number between © and 1, we need
to write it as a fraction in lowest terms Solution:
\(\frac{a}{b}\) and calculate the product of the Given a rational number between

Z

resulting numerator and denominator. We need to[__) © and 1, ..... These are 8
determine how many such rational numbers exist distinct primes. T
where the product \(a \times b = 20!\). Instruction:

Complete a single step
of partial solution. You
should first draft your
thinking process as an
inner monologue...

1. **Prime Factorization of 20!**:
- The prime factors of 20! are 2, 3, 5, 7, 11,

1 17 19. Th i i i .
[Step1] 3, , and ese are 8 distinct primes F’

. . 2. Get Coprime Pairs:
3. **Counting Pairs \(a < b\)**: r2 For a \times b = 20! with \gcd(a,b)=1, each of the 8

| > distinct prime factors of 20! must be partitioned
between them. This gives two choices for each prime,
resulting in 2 ~ 8 = 256 coprime pairs.

Figure 3 | Given a solution trajectory, we take each summarized step as an action to be learned and
take the partial solution before the step as the context of our newly created data. The model is then
prompted to generate its thinking process followed by the action for the current step. A reward (r
in the figure) is then calculated based on the similarity between the model’s and the expert’s action.

* T (Total elements): This is the total number of elements in both sequences combined. It is

calculated as the sum of the lengths of the two sequences: T = |S1]| + |S2|.
* M (Matched elements): The total count of elements found in all non-overlapping matching blocks

between the two sequences. The algorithm first finds the longest contiguous matching subsequence
and then recursively searches for more matches in the segments to the left and right of that block.
If we represent the set of all such matching blocks as a list of tuples (i, j, n), where n is the length
of the matching block, then M is the sum of all lengths n: M = 3’ ; ; ) ematchingBlocks -

Combining these definitions, we can calculate the similarity ratio R € [0, 1] as:

_ 2 Z(i,j,n)eMatchingBlocks n
IS1] + [S2]

In practice, we use Python’s difflib.SequenceMatcher for this comparison, and assign a negative
reward if the generated output y’ fails to follow the required format. Hence, the final reward used is:

R(Ystep, > Ystep,) if ¥’ follows format,

’
" (Ystepy» Ystep,) = -1 otherwise

The policy pg is then optimized using this reward signal with the GRPO objective function defined in
Equation 1. Notably, our reward is computed only on the logical action, not the internal monologue.
This grants the model flexibility to develop its own internal reasoning style while ensuring its external
actions align with the expert’s strategy. This design provides dense, step-level feedback and allows for
rapid reward calculation, making the SRL framework both effective and scalable.

Dynamic sampling for SRL. As our reward signal r € [0,1] U {-1} is dense, we generalize the
dynamic sampling strategy previously designed for outcome accuracy and implement it to filter
samples with less meaningful updates. Specifically, a sample should be filtered out if its rollouts yield
rewards with near-zero variance, providing a weak advantage and thus weak learning signal. With
the sequence similarity reward in SRL, we retain a sample if the standard deviation of the reward
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scores of its rollouts exceeds a threshold ¢ > O:

\/z?ﬂ(r(oi, y) - 7)?

> €
G

where G is the number of generated rollouts, r(0;,y) is the sequence similarity reward for the i-th

rollout o; given the expert trajectory y, and r is the mean reward for the sample. To maintain a

consistent batch size of B, we continuously sample and filter until the batch is filled.

5. Experiments

5.1. Main Results: Math Reasoning

Setup. We finetue Qwen2.5-7B-Instruct (Yang et al., 2024) on the s1K-1.1 dataset (Muennighoff et al.,
2025). This dataset contains 1,000 diverse and challenging questions, each accompanied by a detailed
reasoning trace and a final solution generated by DeepSeek R1. The solutions from DeepSeek R1 are
formatted with structured, numbered steps (e.g., “1. Title of Step 1”). We leverage this structure to
generate intermediate training targets by parsing these solutions and treating each complete step as
a ground-truth continuation. Any data points that do not adhere to this format are excluded. We
hold out 60 questions from the dataset to form our validation set.

Baselines. We benchmark our proposed methods against several baselines, all initialized from the
Qwen2.5-7B-Instruct model. These baselines include: (i) SFT on either the complete reasoning traces
(R1 reasoning) or the final solutions from the s1K-1.1 dataset (R1 outline); (ii) s1K-7B, the official
distilled model released by the dataset’s authors; and (iii) RLVR, which we implement using the
GRPO algorithm. To ensure fair comparison, we implement additional dynamic sampling as in Yu
et al. (2025), which removes samples with all correct or incorrect rollouts. We evaluate RLVR in
two distinct settings: applied directly to the base model and applied after an initial SFT phase. Our
proposed method, SRL, is likewise evaluated both as a standalone technique and in a sequential
configuration where it precedes RLVR (SRL then RLVR). All models are trained for up to 30 epochs,
and for each method, we select the checkpoint with the best performance on the validation set.

Evaluation. We evaluate all models on the following four competition-level mathematical reasoning
benchmarks: AMC23?, AIME24°, AIME25* and Minerva Math (Lewkowycz et al., 2022). Our
evaluation protocol for all benchmarks strictly follows the setup established by Qwen2.5-Math® and
report the accuracy of greedy sampling. In addition, for AMC23, AIME24 and AIME25, we report the
average@32 score with a temperature of 1.0 for all baselines to ensure a more robust evaluation.

Performance. The performance results of our models are summarized in Table 1. Consistent with
the officially released S1K-7B model, our model trained with SFT on the same dataset exhibited a
notable performance degradation. In contrast, methods based on RL maintained generalization on
the evaluation benchmarks. Specifically, while RLVR maintained the performance, SRL provided a
substantial boost of 3.0% on average. Furthermore, applying RLVR after SRL training yielded a 3.7%
increase on average, leveraging only 1k training data.

2https://huggingface.co/datasets/Al-MO/aimo-validation-amc
3https://huggingface.co/datasets/Al-MO/aimo-validation-aime
“https://huggingface.co/datasets/math-ai/aime25
Shttps://github.com/QwenLM/Qwen2.5-Math
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Table 1 | Evaluation results across competition-level math benchmarks. We take Qwen2.5-7B-Instruct
as the base model and report the performance of different training schemes (SFT, RLVR via GRPO,
and SRL) using the same set of training data. The bold numbers indicate the best results among the
open-source models and the underscored numbers represent the second-best results.

Model AMC23 AIME24 AIME25 Minerva Math Average
Avg@32 Greedy Avg@32 Greedy Avg@32 Greedy
Base Model
Qwen2.5-7B-Instruct 49.3 50.0 10.5 13.3 7.5 6.7 34.9 24.6
Training with SFT
S1K-7B 24.1 25.0 2.2 3.3 3.7 3.3 20.2 11.7
SFT (R1 reasoning) 26.8 40.0 3.9 10.0 5.4 10.0 20.2 16.6
SFT (R1 outline) 36.2 27.5 5.1 3.3 3.8 6.7 31.6 16.3
Training with RL(VR)
RL(VR) 52.0 47.5 11.1 10.0 7.4 10.0 33.8 24.5
SFT (outline) — RL(VR) 37.6 35.0 4.9 3.3 4.5 6.7 30.1 17.4
Training with SRL
SRL 51.5 50.0 13.2 16.7 7.1 13.3 36.4 27.6
SRL — RIVR 52.1 57.5 13.3 20.0 8.6 10.0 36.4 28.3

Table 2 | The effect of dynamic filtering on SRL. Filtering out samples with less meaningful updates
provided nontrivial performance improvement. DS stands for dynamic sampling.

Model AMC23 AIME24 AIME25 Minerva Math Average
Avg@32 Greedy Avg@32 Greedy Avg@32 Greedy

SRL w/out DS 48.5 52.5 11.1 13.3 6.8 6.7 33.8 24.7

SRL w/ DS 51.5 50.0 13.2 16.7 7.1 13.3 36.4 27.6

5.2. Analysis: Math Reasoning

Effect of dynamic sampling in SRL. In Table 2, we analyze the impact of the dynamic sampling
component in SRL, based on thresholding the standard deviation of sequence similarity rewards
within rollouts. For both models, we train until the training reward converges and select checkpoint
based on validation scores. Our results are consistent the findings of DAPO (Yu et al., 2025), which
stated that removing samples that provide a zero learning signal is critical in the effectiveness of the
RL training loop, showing non-trivial d performance improvement.

Disentangling the impact of guidance granularity in SRL. To isolate the effects of guidance
granularity from the benefits of sequence similarity rewards, we evaluated our multi-step method
against two simplified, one-step baselines:

* Final-answer reward: This baseline utilizes RLVR trained with GRPO, rewarding the model solely
based on the correctness of the final answer.

* Holistic sequence similarity reward: The model generates a complete solution in a single step. This
entire solution is then evaluated for similarity against the complete ground-truth trajectory.

As shown in Table 3, the results underscore the value of fine-grained guidance for sequence similarity
reward. While the holistic sequence-similarity reward improved performance on average, providing
granular, step-by-step guidance led to markedly superior performance across benchmarks.
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Table 3 | Model Performance of different reward functions and density. For sequence similarity reward,
we implement it with the entire expert output as an one-step supervision. The model benefits from
our multi-step decomposition on the small set of challenging training data.

AMC23 AIME24 AIME25

Model Minerva Math Average
Avg@32 Greedy Avg@32 Greedy Avg@32 Greedy
Final Answer Reward
One-step (RLVR) 52.0 47.5 11.1 10.0 7.4 10.0 33.8 24.5
Sequence Similarity Reward
One-step 51.8 52.5 11.7 13.3 6.9 10.0 34.9 25.9
Multi-step (SRL) 51.5 50.0 13.2 16.7 7.1 13.3 36.4 27.6

Interleaved reasoning behaviors. Beyond achieving superior performance, models trained with
SRL demonstrate distinctive and flexible reasoning patterns. Conventional models typically generate
a single, monolithic block of reasoning at the beginning of a solution. In contrast, our models,
particularly those fine-tuned with RLVR, dynamically interleave reasoning steps with the solution-
generation process. This behavior manifests in three primary ways: (1) upfront planning by outlining
all subsequent steps in a comprehensive initial plan; (2) on-the-fly adjustments by inserting multiple,
distinct reasoning blocks throughout its solution to make iterative plans and adjustments; and (3)
reflective verification: the model pauses to reflect on and verify its answer before delivering the final
output. The examples (Example 1 below and 2 in the Appendix), drawn from a model trained with
our SRL—RL approach, illustrate these emergent reasoning patterns.

Example 1: Interleaved thinking and self-verification

Question: What is the least positive integer value of x for which the inequality 3x > 2x + 1 is true?
<think>
To solve the inequality 3x > 2x + 1, we can start by isolating x. Let’s subtract 2x from both sides of the
inequality.
</think>
Subtract 2x from both sides:

3x—-2x>2x+1-2x

This simplifies to:
x>1

<think>

We can verify this by substituting x = 2 into the original inequality to ensure it holds true.

</think>

The inequality x > 1 tells us that x must be greater than 1. The smallest positive integer greater than 1
is 2. Therefore, the least positive integer value of x that satisfies the inequality is 2.

Substitute x = 2 into the original inequality:

3(2) > 2(2) + 1
This simplifies to:
6>5

This is true, so x = 2 is indeed a solution.
Therefore, the least positive integer value of x for which the inequality 3x > 2x + 1 is true is .

- /

Reasoning length. We further investigate whether the performance gains from SRL can be simply
attributed to an increase in reasoning length. In Figure 4, we plot the distribution of reasoning lengths
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(i.e., the number of words in the solution) for both the base model and our SRL-finetuned model.
We observe no significant difference between the two distributions. This finding suggests that the
performance improvement stems from enhanced planning and higher-quality reasoning, rather than
merely an increased token budget at inference time.

Reasoning Length for AIME24

Thtse SRL+RL

0.0015

Density

0.0010

0.0005

0.0000
—200 0 200 400 600 800 1000 1200 1400

Number of Words

Figure 4 | Reasoning length distribution for base model and model trained with SRL.

5.3. Extension: Software Engineering Agentic Reasoning

Task. We extend our SRL framework to the domain of software engineering, training agents to
resolve real-world programming issues. These tasks are commonly evaluated on benchmarks like
SWE-Bench (Jimenez et al., 2023), which requires agents to perform complex, multi-turn interactions
with large codebases and reason deeply about code functionality.

However, unlike in math domain, the direct application of online RL to software engineering is
impeded by significant practical challenges. These include handling long context windows, high-
latency environment feedback, and slow patch verification (Golubev et al., 2025; Wei et al., 2025).
Consequently, these obstacles have hindered the development of stable and scalable end-to-end RL
methods, leading to a prevailing approach of collecting expert agent trajectories and distilling them
into a policy via SFT (Pan et al., 2024; Yang et al., 2025).

Setup. We apply SRL to further fine-tune QwenZ2.5-Coder-7B-Instruct (Hui et al., 2024), a model
already specialized for coding tasks. We use a dataset from Yang et al. (2025), which consists of 5,000
expert agent trajectories. These trajectories were generated by claude-3-7-sonnet-20250219 (An-
thropic, 2025) and subsequently verified to ensure they produce correct code patches.

Each trajectory is composed of multiple steps defined by the agent’s interactions with the coding
environment. As the example below illustrates, a single step contains natural language reasoning
followed by an executable action:

I'1l help you implement the necessary changes to fix the issue with the ~OriginValidator ™ not
properly handling wildcard (*) in allowed_origins. Let's follow the steps you outlined.

## Step 1: Find and read relevant code

First, let's explore the repository structure to locate the “OriginValidator™ class mentioned
in the PR description. This is an extra long line added to demonstrate how the automatic line
wrapping feature from the listings package works.

<function=bash>

<parameter=command>find /testbed -type f -name "*.py
r>

</function>

" | grep -v "__pycache__" | sort</paramete
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Table 4 | Performance of SRL on SWE-Bench-Verified. Results in the table are using greedy decoding.

Oracle File Edit End-to-End

Qwen2.5-Coder-Instruct (Base) 5.8 3.2
SWE-Gym-7B 8.4 4.2
SRL (ours) 14.8 8.6

In line with our SRL formulation (Section 4.2), we define the “action” as the environment-consumable
command (e.g., the bash call). Following this decomposition, we process the full trajectories to create
134k step-wise training instances. For validation, we hold out 30 full trajectories, from which we
curate a validation set of 650 step-wise instances.

Evaluation. We evaluate our model’s patch generation performance by measuring its resolve rate (%)
under two distinct configurations, following Wei et al. (2025): (1) Oracle file editing evaluation: The
model is provided with the oracle code files to repair. This configuration isolates and measures the
model’s core patch generation capability; (2) End-to-end evaluation: This setting uses the Agentless-
mini agent scaffold (Wei et al., 2025) to first identify the file(s) to modify and subsequently generate
the patch. It tests the model’s fault localization and code repair abilities in conjunction.

We compare our SRL-trained model against two crucial baselines: the original base model
(Qwen2.5-Coder-Instruct) and SWE-Gym-7B (Pan et al., 2024). Since SWE-Gym-7B is an SFT-based
model finetuned from the same base model, this provides a direct, fair comparison between SFT and
our SRL training methodology. As shown in Table 4, SRL substantially outperforms both baselines.
In the oracle setting, SRL achieves a 14.8% resolve rate, representing a 74% relative improvement
over the strong SWE-Gym-7B baseline. The performance gain is consistent when evaluating in the
challenging end-to-end setting, where SRL can obtain twice the performance.

5.4. Discussion

Lastly, we note that the effectiveness of SRL is fundamentally contingent on the student model’s
initial proficiency to the task and the quality of the step-wise data and rollout samples obtained. A
key prerequisite is that the student model must demonstrate a baseline competence in instruction-
following. This ensures that the initial rollout samples are task-relevant and correctly structured,
establishing a solid foundation for learning. Furthermore, while our step-wise decomposition method
reduces task complexity, the resulting data must allow the policy model to attain good rewards with
certain probability.

6. Conclusion

In conclusion, we introduced Supervised Reinforcement Learning (SRL), a novel method designed to
teach LLMs complex reasoning skills from expert demonstrations, particularly for problems that are too
difficult for conventional RL or SFT approaches. By breaking down expert solutions into manageable
steps and leveraging a dense sequence similarity reward, SRL provides effective, granular guidance
that bridges the gap between imitation learning and reinforcement learning. Our empirical results
demonstrate that SRL not only significantly outperforms baseline methods in both mathematical
reasoning and software engineering tasks but also enables a powerful curriculum learning strategy
when combined with RIVR. This work establishes SRL as a robust and generalizable technique for
unlocking a model’s potential to learn from challenging, multi-step problems, paving the way for
training more capable and versatile Al agents.
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A. Tllustration of SRL on SWE Tasks.

In Figure 5, we illustrate how we approach the SWE tasks with SRL. We take two consecutive action-
observation pairs from the expert trajectories in the given SFT data as context. We prompt the LLM
to first think in monologues and then conclude with its action. Sequence similarity score is thus
computed between model action and expert action in the trajectory.

Past Expert Action .
<function=str_replace_editor> Past Observation Past Expert Action Past Observation
<parameter-command>create< = g—— <function=bash> Error importing
/parameter> sl <parameter=command>cd generated parsers,
<parameter=path>/testbed/rep /testbed/reyroau /testbed && python run “python
roduce.py</parameter> P reproduce.py</parameter> setup.py antlr” to

ce-py </function> regenerate

</function>

Context Model Thoughts
<think> Model Action Expert Action
The error message <function=bash> <function=bash>
LLM indicates that the cd /testbed && python cd /testbed && pip
generated parsers are setup.py antlir install -e .
missing or outdated... </function> </function>
</think>

Reward r = similarity(model
action, expert action)

Figure 5 | [llustration of applying SRL to SWE tasks. We take two rounds of the past expert actions
and corresponding observations in context and prompt the LLM to think before reaches the next
action. The model action is compared with the expert action to compute the sequence similarity
reward.

B. Experiment Details

We use VeRL as the training framework for GRPO and implement SRL based on it. In Table 5, 6 and 7,
we detail the hyperparameters that we used for SFT, GRPO and SRL. The batch size for GRPO is set to
be smaller (128) than SRL (512) as the filter rate is high based on final answer correctness, for most
of the questions are very difficult. We maintain a smaller batch size to avoid repeated sampling and
achieve better performance. We further lay out the system prompts we used for SRL. Experiments
were conducted on GPU clusters to the similar level of NVIDIA H100 80GB GPU.

Table 5 | Supervised fine-tuning hyperparameters.

Data type bf16
Learning rate 5e-6
Global batch size 64
Scheduler Cosine
Warmup ratio 0.3
Num train epochs 3
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Table 6 | GRPO hyperparameters.

Batch size 128
Max grad norm 1.0
Data type bf16
Learning rate S5e-7
Warmup ratio 0.0

Rollout temperature | 1.0

Rollout number 8
KL loss coeff 0
Table 7 | SRL hyperparameters.
Batch size 512
Max grad norm 1.0
Data type bf16
Learning rate Se-7
Warmup ratio 0.0
Rollout temperature | 1.0
Rollout number 8
KL loss coeff 0

System Prompt for SRL

You are a helpful assistant for solving mathematical problems. A user will provide a math problem, which may include a partial
solution. Your task is to continue the solution by providing the very next logical step.

A user will ask you to solve a task. You should first draft your thinking process (inner monologue). Then, generate the solution.
Your response format must follow the template below: <think> Your thoughts or/and draft, like working through an exercise on

scratch paper. Be as casual and as long as you want until you are confident to generate a correct solution. </think> Provide only
the single, next step to continue the solution. Do not solve the entire problem.
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C. Additional Output Examples

Example 2: Planning

Question: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in
repairs. This increased the value of the house by 150%. How much profit did he make?
<think>
To determine Josh’s profit, we need to follow these steps:
1. Calculate the new value of the house after the repairs.
2. Subtract the initial cost of the house and the repair costs from the new value to find the profit.
</think>
First, let’s calculate the new value of the house after the repairs. The value of the house increased by
150% after the repairs.
The initial cost of the house is $80,000, and the repairs cost $50,000. The total cost before the value
increase is:

80,000 + 50,000 = 130, 000

The value of the house increased by 150% of its initial value of $80,000. So, the increase in value is:
150% x 80,000 = 1.5 x 80,000 = 120, 000
Therefore, the new value of the house is:
80, 000 + 120, 000 = 200, 000

Now, we subtract the total cost (initial cost of the house plus the repair costs) from the new value of the
house to find the profit:
200, 000 - 130,000 = 70, 000

[70000]
. /

Example 3: Self-verification

Question: Which one of these constellations is not located along the Milky Way in the sky?
Answer Choices: (A) Perseus (B) Cygnus (C) Scorpius (D) Leo

So, Josh’s profit is:

First, let’s recall which constellations are along the Milky Way. Perseus, Cygnus, and Scorpius are
all well-known constellations that lie along the Milky Way. However, Leo is not one of them; it is lo-
cated in the northern sky and does not align with the Milky Way. Therefore, the correct answer is (D) Leo.

<think>

To double-check, I can recall the general locations of these constellations:

- Perseus is in the northern sky and is part of the Perseus Arm of the Milky Way.

- Cygnus is also in the northern sky and is part of the Orion Arm of the Milky Way.

- Scorpius is in the southern sky and is part of the Sagittarius Arm of the Milky Way.
- Leo is in the northern sky and is not aligned with the Milky Way.

</think>

The answer is (D) Leo.

D. LLM Usage

Throughout the preparation of this manuscript, we utilized a LLM as an assistant with refinement
of writing. Its role was strictly limited to improving grammar, rephrasing sentences for clarity, and
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correcting spelling. All intellectual contributions, ideas, and conclusions presented in this paper are
entirely the work of the authors.
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