Notizie di Intelligenza Artificiale Inclusiva in Tempo Reale: Innovazione e Accessibilità Pro bono publico

Tag: finance ai

Compliance e Intelligenza Artificiale: strategie di gestione del rischio nel settore finanziario

Negli ultimi due anni, gli investimenti in progetti di digital compliance hanno registrato una crescita costante, con un tasso medio annuo del 10%. Questo aumento è stato particolarmente evidente nel settore bancario, il quale, grazie a una maggiore disponibilità di dati e a ingenti investimenti strategici, ha guadagnato un vantaggio significativo in termini di maturità tecnologica nel campo della compliance. Allo stesso tempo, il settore assicurativo ha intensificato i propri sforzi per colmare il divario digitale, con un notevole aumento degli investimenti che, nel 2023, hanno registrato un aumento del 25%. Sono dati che emergono da uno studio focalizzato sulla digital compliance e sul livello di digitalizzazione delle istituzioni finanziarie e condotto dal Centro di Ricerca dell’Università Cattolica del Sacro Cuore di Milano (Cetif Research) in collaborazione con Avantage Reply.

Attualmente, il 45% delle istituzioni bancarie e il 38% delle compagnie assicurative ha una specifica funzione di digital compliance all’interno della struttura di compliance. Altre istituzioni, pur non avendo un’unità strutturata, stanno integrando risorse specializzate. Le competenze più diffuse nel settore bancario sono quelle di verifica e controllo (34%) e analisi normativa (15%), mentre si stanno introducendo nuove figure con competenze digitali avanzate come data analyst o data architect (44%) e sviluppatori di IT (13%) o di AI (10%). Nel settore assicurativo, le competenze prevalenti includono analisti funzionali o subject matter expert (74%) e data scientist/analyst/architect (26%). Tuttavia, l’integrazione di figure professionali con competenze trasversali rimane una sfida a causa della complessità tecnica della funzione, che ostacola il suo sviluppo.

L’Intelligenza Artificiale rappresenta una delle soluzioni tecnologiche più promettenti per la compliance, sia nelle sue applicazioni più tradizionali come il Machine Learning e l’Advanced Analytics, sia nelle sue applicazioni generative come ChatGPT, perché è in grado di offire un sostegno significativo all’attività e all’operatività della compliance, specialmente considerando le sfide legate alla conformità regolamentare e alla gestione dei dati nel contesto normativo in rapida evoluzione.

Nel momento in cui la sicurezza e la gestione accurata dei dati diventano centrali, emerge la necessità di una governance solida per garantire la conformità normativa e limitare i potenziali rischi e per farlo, la compliance deve adottare un modello data-driven, anche attraverso l’uso di strumenti tecnologici avanzati come l’Intelligenza Artificiale.

Tutto questo richiede però un cambiamento culturale e organizzativo che, oltre all’adozione di strumenti specifici, preveda il coinvolgimento di risorse qualificate e competenze specialistiche, con la creazione di team eterogenei e una maggiore collaborazione tra le varie funzioni aziendali.

In conclusione, la digital compliance si conferma come un elemento chiave per le istituzioni finanziarie nel gestire le sfide normative e i rischi nel contesto digitale in evoluzione. L’adozione di tecnologie innovative come l’Intelligenza Artificiale e il potenziamento delle competenze trasversali sono quindi da ritenersi elementi cruciali per affrontare con successo queste sfide e garantire la conformità normativa.

L’Intelligenza Artificiale nella finanza e negli investimenti: tra analisi predittiva e gestione del rischio

L’Intelligenza Artificiale (AI) è emersa come forza di trasformazione anche nel settore finanziario e degli investimenti, rimodellando i modelli di business tradizionali.

Automatizzando processi complessi, analizzando grandi quantità di dati e fornendo informazioni utili, l’Intelligenza Artificiale ha il potenziale per rivoluzionare il modo in cui le istituzioni finanziarie operano e prendono decisioni.

Per quanto riguarda ad esempio la previsione delle tendenze di mercato e delle opportunità di investimento, ad esempio, l’analisi predittiva è una delle applicazioni chiave dell’AI nel settore: gli algoritmi di apprendimento automatico e le tecniche statistiche avanzate possono essere usati per analizzare i dati storici e per prevedere le tendenze di mercato, identificando le opportunità di investimento. Analizzando schemi e tendenze in grandi insiemi di dati, i modelli predittivi alimentati dall’AI possono infatti generare previsioni accurate e tempestive, consentendo alle istituzioni finanziarie di prendere decisioni informate e ottimizzare le proprie strategie di investimento.

Nel settore finanziario e degli investimenti, l’analisi predittiva trova numerose applicazioni, tra cui:

  1. Previsioni del mercato azionario: i modelli predittivi basati sull’intelligenza artificiale possono analizzare i prezzi storici dei titoli, i volumi di scambio e le notizie di mercato per prevedere i movimenti futuri dei prezzi, consentendo agli investitori di prendere decisioni informate di acquisto, vendita o mantenimento;
  2. Rilevamento delle frodi: l’analisi predittiva può aiutare le istituzioni finanziarie a rilevare e prevenire le frodi identificando schemi insoliti o anomalie nei dati delle transazioni, riducendo il rischio di perdite finanziarie e danni alla reputazione;
  3. Valutazione del rischio: analizzando i dati storici e le tendenze di mercato, i modelli predittivi possono valutare il rischio associato a investimenti specifici, consentendo agli istituti finanziari di ottimizzare i loro portafogli e di gestire il rischio in modo più efficace.

Dal punto di vista della gestione del rischio invece, l’Intelligenza Artificiale ha il potenziale per migliorare significativamente le capacità di gestione dello stesso. Automatizzando processi complessi, analizzando grandi quantità di dati e fornendo approfondimenti in tempo reale, le soluzioni di gestione del rischio basate sull’AI possono aiutare gli istituti finanziari a prendere decisioni più informate e a mitigare i rischi in modo più efficace.

Alcuni dei principali vantaggi dell’Intelligenza Artificiale nella gestione del rischio includono:

  1. Miglioramento del processo decisionale: le soluzioni di gestione del rischio basate sull’Intelligenza Artificiale sono in grado di analizzare grandi insiemi di dati in tempo reale, fornendo agli istituti finanziari approfondimenti praticabili e consentendo loro di prendere decisioni più informate;
  2. Maggiore efficienza operativa: automatizzando processi complessi, l’AI può aiutare gli istituti finanziari a ridurre lo sforzo manuale, a minimizzare gli errori e a migliorare l’efficienza operativa;
  3. Monitoraggio del rischio in tempo reale: le soluzioni di gestione del rischio basate sull’Intelligenza Artificiale possono monitorare le tendenze e i rischi del mercato in tempo reale, consentendo alle istituzioni finanziarie di rispondere rapidamente alle mutevoli condizioni di mercato e di mitigare i rischi in modo più efficace;
  4. Profili di rischio personalizzati: l’Intelligenza Artificiale può analizzare i profili, le preferenze e la propensione al rischio dei singoli investitori, consentendo alle istituzioni finanziarie di fornire raccomandazioni di investimento personalizzate e strategie di gestione del rischio.

Risulta quindi evidente come l’Intelligenza Artificiale sia in grado di impattare in modo potente anche il settore della finanza e degli investimenti, guidando l’innovazione e spingendo al cambiamento i modelli di business tradizionali. Liberando il potenziale dell’analisi predittiva e della gestione del rischio, l’AI ha il potenziale per rivoluzionare il modo in cui banche e istituzioni finanziarie operano e prendono decisioni.

L’Intelligenza Artificiale sta peraltro cambiando anche la qualità dei prodotti e dei servizi offerti dal settore bancario. 

L’apprendimento automatico consente ad esempio agli istituti finanziari di fornire servizi personalizzati e raccomandazioni su misura ai clienti. Analizzando il comportamento, le preferenze e i dati storici dei clienti, gli algoritmi di apprendimento automatico possono fornire consigli di investimento personalizzati, piani finanziari personalizzati e offerte di prodotti mirati. Ciò aumenta la soddisfazione del cliente, favorisce relazioni a lungo termine e migliora l’esperienza complessiva del cliente nel settore finanziario.

Tuttavia, poiché il machine learning continua a guidare l’innovazione nella finanza, è fondamentale affrontare considerazioni etiche e garantire la conformità normativa. Trasparenza, equità e responsabilità sono fondamentali quando si utilizzano algoritmi di machine learning nel processo decisionale finanziario. Non sfugge quindi, anche in questo contesto, l’importanza del tema etico, perché trovare il giusto equilibrio tra innovazione e responsabilità è essenziale per mantenere la fiducia e proteggere gli interessi di tutte le parti interessate.

CC BY-NC-SA 4.0 DEED | Disclaimer Contenuti | Informativa Privacy | Informativa sui Cookie