Perfomance regressiva dei modelli LLM di nuova generazione: il caso SuperARC e la lezione scomoda per l’AGI

Il fascino del nuovo ha un prezzo, e nel caso dell’ultima generazione di modelli linguistici sembra essere quello di un lento ma costante passo indietro. I dati emersi dal SuperARC, il test ideato dall’Algorithmic Dynamics Lab per misurare capacità di astrazione e compressione ricorsiva senza passare dal filtro dell’interpretazione umana, mostrano un quadro che stride con la narrativa ufficiale. Qui non ci sono badge “PhD-level” né claim da conferenza stampa, solo un rigore matematico fondato sulla teoria dell’informazione algoritmica di Kolmogorov e Chaitin, che mette a nudo ciò che i modelli sanno davvero fare quando la vernice del linguaggio scorrevole non basta più a coprire le crepe.