L’utilizzo di modelli di linguaggio di grandi dimensioni (LLM) ha trasformato numerosi settori, dall’automazione industriale alla generazione di contenuti personalizzati. Tuttavia, man mano che queste tecnologie avanzano, aumenta anche la complessità di garantire la loro sicurezza, performance e affidabilità. Le sfide si moltiplicano quando si cerca di testare e ottimizzare i prompt in un contesto operativo reale, dove ogni vulnerabilità potrebbe tradursi in falle di sicurezza o inefficienze critiche.
Il panorama attuale degli strumenti per il testing delle LLM non riesce spesso a soddisfare le esigenze delle aziende: configurazioni macchinose, funzionalità limitate e mancanza di integrazione con flussi CI/CD (Continuous Integration/Continuous Deployment) moderni rappresentano ostacoli significativi.