L’intelligenza artificiale non dimentica mai, e questo è il problema. Da quando i Large Language Models hanno imparato a “ragionare” come agenti autonomi – interagendo con strumenti, prendendo decisioni, riflettendo su ciò che hanno fatto due minuti prima – l’ingombro informativo è diventato il loro tallone d’Achille. Benvenuti nel regno oscuro del context engineering, la disciplina meno sexy ma più strategica della nuova ingegneria dei sistemi intelligenti. Perché puoi avere anche il modello più brillante del mondo, ma se gli butti addosso un torrente ininterrotto di token inutili, diventa stupido come un autore di contenuti SEO generati nel 2019.
La questione è brutale: ogni LLM ha una finestra di contesto (context window), cioè una quantità limitata di testo che può “ricordare” per ogni richiesta. Superata quella soglia, il modello non dimentica: semplicemente impazzisce. E quando succede, arrivano le allucinazioni, i comandi errati, i tool usati a casaccio, risposte fuori tema, promesse non mantenute. Hai presente quando un agente AI dice di aver già fatto qualcosa… che non ha mai fatto? È l’equivalente neurale di un manager che giura di aver mandato l’email, ma non l’ha nemmeno scritta. Context poisoning allo stato puro.